Cargando…

Friction Determination by Atomic Force Microscopy in Field of Biochemical Science

Atomic force microscopy (AFM) is an analytical nanotechnology in friction determination between microscale and nanoscale surfaces. AFM has advantages in mechanical measurement, including high sensitivity, resolution, accuracy, and simplicity of operation. This paper will introduce the principles of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yan, Wang, Jianhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082115/
https://www.ncbi.nlm.nih.gov/pubmed/30424246
http://dx.doi.org/10.3390/mi9070313
Descripción
Sumario:Atomic force microscopy (AFM) is an analytical nanotechnology in friction determination between microscale and nanoscale surfaces. AFM has advantages in mechanical measurement, including high sensitivity, resolution, accuracy, and simplicity of operation. This paper will introduce the principles of mechanical measurement by using AFM and reviewing the progress of AFM methods in determining frictions in the field of biochemical science over the past decade. While three friction measurement assays—friction morphology, friction curve and friction process in experimental cases—are mainly introduced, important advances of technology, facilitating future development of AFM are also discussed. In addition to the principles and advances, the authors also give an overview of the shortcomings and restrictions of current AFM methods, and propose potential directions of AFM techniques by combining it with other well-established characterization techniques. AFM methods are expected to see an increase in development and attract wide attention in scientific research.