Cargando…

Biochemical and molecular characterization of 3-Methylcrotonylglycinuria in an Italian asymptomatic girl

3-Methylcrotonylglycinuria is an organic aciduria resulting from deficiency of 3-methylcrotonyl-CoA carboxylase (3-MCC), a biotin-dependent mitochondrial enzym carboxylating 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA during leucine catabolism. Its deficiency, due to mutations on MCCC1 and MCCC2...

Descripción completa

Detalles Bibliográficos
Autores principales: Cozzolino, Carla, Villani, Guglielmo RD, Frisso, Giulia, Scolamiero, Emanuela, Albano, Lucia, Gallo, Giovanna, Romanelli, Roberta, Ruoppolo, Margherita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Genética 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082241/
https://www.ncbi.nlm.nih.gov/pubmed/29767664
http://dx.doi.org/10.1590/1678-4685-GMB-2017-0093
Descripción
Sumario:3-Methylcrotonylglycinuria is an organic aciduria resulting from deficiency of 3-methylcrotonyl-CoA carboxylase (3-MCC), a biotin-dependent mitochondrial enzym carboxylating 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA during leucine catabolism. Its deficiency, due to mutations on MCCC1 and MCCC2 genes, leads to accumulation of 3-methylcrotonyl-CoA metabolites in blood and/or urine, primarily 3-hydroxyisovaleryl-carnitine (C5-OH) in plasma and 3-methylcrotonyl-glycine (3-MCG) and 3-hydroxyisovaleric acid (3-HIVA) in the urine. The phenotype of 3-MCC deficiency is highly variable, ranging from severe neurological abnormalities and death in infancy to asymptomatic adults. Here we report the biochemical and molecular characterization of an Italian asymptomatic girl, positive for the newborn screening test. Molecular analysis showed two mutations in the MCCC2 gene, an already described missense mutation, c.691A > T (p.I231F), and a novel splicing mutation, c.1150-1G > A. We characterized the expression profile of the splice mutation by functional studies.