Cargando…
Correlation of the absorbed dose to the blood and DNA damage in leukocytes after internal ex-vivo irradiation of blood samples with Ra-224
BACKGROUND: Irradiation with α-particles creates densely packed damage tracks along particle trajectories in exposed cells, including complex DNA damage and closely spaced double-strand breaks (DSBs) in hit nuclei. Here, we investigated the correlation of the absorbed dose to the blood and the numbe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082247/ https://www.ncbi.nlm.nih.gov/pubmed/30083998 http://dx.doi.org/10.1186/s13550-018-0422-4 |
Sumario: | BACKGROUND: Irradiation with α-particles creates densely packed damage tracks along particle trajectories in exposed cells, including complex DNA damage and closely spaced double-strand breaks (DSBs) in hit nuclei. Here, we investigated the correlation of the absorbed dose to the blood and the number of α-induced DNA damage tracks elicited in human blood leukocytes after ex-vivo in-solution exposure with Ra-224. The aim was to compare the data to previously published data on Ra-223 and to investigate differences in DNA damage induction between the two radium isotopes. RESULTS: Blood samples from three healthy volunteers were exposed ex-vivo to six different concentrations of Ra-224 dichloride. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the Ra-224 decay chain, ranging from 0 to 127 mGy. γ-H2AX + 53BP1 DNA damage co-staining and analysis was performed on ethanol-fixed leukocytes isolated from the irradiated blood samples. For damage quantification, α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci were enumerated in the exposed leukocytes. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values. CONCLUSIONS: Our data provide a first estimation of the DNA damage induced by Ra-224 in peripheral blood mononuclear cells. A comparison with our previously published Ra-223 data suggests that there is no difference in the induction of radiation-induced DNA damage between the two radium isotopes due to their similar decay properties. |
---|