Cargando…
Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation
Laser milling is a micro-machining process that uses a laser beam as a tool to remove material through the layer-by-layer ablation mechanism. Generally in laser ablation, the quality of parts is reduced by melt accretions and thermal damage; therefore, this problem is reduced with shorter pulse dura...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082258/ https://www.ncbi.nlm.nih.gov/pubmed/30424257 http://dx.doi.org/10.3390/mi9070324 |
_version_ | 1783345777138991104 |
---|---|
author | Campanelli, Sabina Luisa Lavecchia, Fulvio Contuzzi, Nicola Percoco, Gianluca |
author_facet | Campanelli, Sabina Luisa Lavecchia, Fulvio Contuzzi, Nicola Percoco, Gianluca |
author_sort | Campanelli, Sabina Luisa |
collection | PubMed |
description | Laser milling is a micro-machining process that uses a laser beam as a tool to remove material through the layer-by-layer ablation mechanism. Generally in laser ablation, the quality of parts is reduced by melt accretions and thermal damage; therefore, this problem is reduced with shorter pulse duration, although ablation efficiency decreases as well. Thus, laser ablation in the nanosecond range still offers a good compromise between process quality and efficiency. Therefore, laser milling with nanosecond laser ablation requires an accurate study to reduce geometric defects induced by the process. The aim of this paper was to study the shape geometry and roughness of Ti6Al4V parts fabricated by laser milling using a nanosecond Nd:YAG laser source. The impact of the laser processing parameters on machining outcomes was studied in order to determine the optimized processing conditions for reducing geometrical defects and improving surface quality. In particular, the influence of average laser power, frequency, and scanning speed was investigated. The geometry of micro-parts was revealed using a 3D digitizing system, the Optimet Mini Conoscan 4000, which combines a non-contact, single-point measuring sensor based on conoscopic holography technology. The use of this measurement technology yielded complete information of the shape geometry and dimensions of the built parts. In addition, the roughness of manufactured surfaces was assessed to complete the analysis. |
format | Online Article Text |
id | pubmed-6082258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60822582018-11-01 Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation Campanelli, Sabina Luisa Lavecchia, Fulvio Contuzzi, Nicola Percoco, Gianluca Micromachines (Basel) Article Laser milling is a micro-machining process that uses a laser beam as a tool to remove material through the layer-by-layer ablation mechanism. Generally in laser ablation, the quality of parts is reduced by melt accretions and thermal damage; therefore, this problem is reduced with shorter pulse duration, although ablation efficiency decreases as well. Thus, laser ablation in the nanosecond range still offers a good compromise between process quality and efficiency. Therefore, laser milling with nanosecond laser ablation requires an accurate study to reduce geometric defects induced by the process. The aim of this paper was to study the shape geometry and roughness of Ti6Al4V parts fabricated by laser milling using a nanosecond Nd:YAG laser source. The impact of the laser processing parameters on machining outcomes was studied in order to determine the optimized processing conditions for reducing geometrical defects and improving surface quality. In particular, the influence of average laser power, frequency, and scanning speed was investigated. The geometry of micro-parts was revealed using a 3D digitizing system, the Optimet Mini Conoscan 4000, which combines a non-contact, single-point measuring sensor based on conoscopic holography technology. The use of this measurement technology yielded complete information of the shape geometry and dimensions of the built parts. In addition, the roughness of manufactured surfaces was assessed to complete the analysis. MDPI 2018-06-27 /pmc/articles/PMC6082258/ /pubmed/30424257 http://dx.doi.org/10.3390/mi9070324 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Campanelli, Sabina Luisa Lavecchia, Fulvio Contuzzi, Nicola Percoco, Gianluca Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation |
title | Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation |
title_full | Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation |
title_fullStr | Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation |
title_full_unstemmed | Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation |
title_short | Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation |
title_sort | analysis of shape geometry and roughness of ti6al4v parts fabricated by nanosecond laser ablation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082258/ https://www.ncbi.nlm.nih.gov/pubmed/30424257 http://dx.doi.org/10.3390/mi9070324 |
work_keys_str_mv | AT campanellisabinaluisa analysisofshapegeometryandroughnessofti6al4vpartsfabricatedbynanosecondlaserablation AT lavecchiafulvio analysisofshapegeometryandroughnessofti6al4vpartsfabricatedbynanosecondlaserablation AT contuzzinicola analysisofshapegeometryandroughnessofti6al4vpartsfabricatedbynanosecondlaserablation AT percocogianluca analysisofshapegeometryandroughnessofti6al4vpartsfabricatedbynanosecondlaserablation |