Cargando…
Bcl11b Regulates IL-17 Through the TGF-β/Smad Pathway in HDM-Induced Asthma
PURPOSE: T helper (Th) 17 cells play a critical role in the development of asthma, but the underlying mechanism of how interleukin (IL)-17 is regulated in allergic airway inflammation is poorly understood. In this study, we investigated the impact of Bcl11b on Th17 response in asthma. METHODS: Blood...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Academy of Asthma, Allergy and Clinical Immunology; The Korean Academy of Pediatric Allergy and Respiratory Disease
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082824/ https://www.ncbi.nlm.nih.gov/pubmed/30088373 http://dx.doi.org/10.4168/aair.2018.10.5.543 |
Sumario: | PURPOSE: T helper (Th) 17 cells play a critical role in the development of asthma, but the underlying mechanism of how interleukin (IL)-17 is regulated in allergic airway inflammation is poorly understood. In this study, we investigated the impact of Bcl11b on Th17 response in asthma. METHODS: Blood samples from patients with mild asthma (MA) and severe asthma (SA) were collected. Expression of Bcl11b, IL-4, IL-5, IL-13, IL-17A and transforming growth factor (TGF)-β1 were determined in CD4(+) T cells and plasma by polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Relative mRNA and protein levels of Bcl11b, IL-17A and genes involved in the TGF/Smad signaling pathway were examined by PCR, ELISA and western blot analysis in house dust mite (HDM)-challenged mice. Ectopic expression of Bcl11b in HDM-stimulated primary mouse splenocytes was achieved by nucleofection of Bcl11b expression plasmid. RESULTS: We found significantly decreased Bcl11b but increased IL-17A and TGF-β1 expression in patients with asthma and a strongly negative correlation between Bcl11b and these 2 cytokines in SA patients. Similar expression patterns of Bcl11b, IL-17A and TGF-β1 were also found in mice with HDM-induced allergic airway inflammation. We demonstrated further that Smad2/3 phosphorylation was increased in HDM-challenged mice and that ectopic expression of Bcl11b in HDM-stimulated primary mouse splenocytes reduced Smad2 phosphorylation and IL-17 expression. CONCLUSIONS: Our findings demonstrate a potential effect of Bc111b in controlling IL-17-mediated inflammation in asthma and suggest that Bc111b may be a useful therapeutic target for asthma. |
---|