Cargando…
Large numbers of explanatory variables: a probabilistic assessment
Recently, Cox and Battey (2017 Proc. Natl Acad. Sci. USA 114, 8592–8595 (doi:10.1073/pnas.1703764114)) outlined a procedure for regression analysis when there are a small number of study individuals and a large number of potential explanatory variables, but relatively few of the latter have a real e...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083238/ https://www.ncbi.nlm.nih.gov/pubmed/30108456 http://dx.doi.org/10.1098/rspa.2017.0631 |
_version_ | 1783345937984258048 |
---|---|
author | Battey, H. S. Cox, D. R. |
author_facet | Battey, H. S. Cox, D. R. |
author_sort | Battey, H. S. |
collection | PubMed |
description | Recently, Cox and Battey (2017 Proc. Natl Acad. Sci. USA 114, 8592–8595 (doi:10.1073/pnas.1703764114)) outlined a procedure for regression analysis when there are a small number of study individuals and a large number of potential explanatory variables, but relatively few of the latter have a real effect. The present paper reports more formal statistical properties. The results are intended primarily to guide the choice of key tuning parameters. |
format | Online Article Text |
id | pubmed-6083238 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-60832382018-08-14 Large numbers of explanatory variables: a probabilistic assessment Battey, H. S. Cox, D. R. Proc Math Phys Eng Sci Research Articles Recently, Cox and Battey (2017 Proc. Natl Acad. Sci. USA 114, 8592–8595 (doi:10.1073/pnas.1703764114)) outlined a procedure for regression analysis when there are a small number of study individuals and a large number of potential explanatory variables, but relatively few of the latter have a real effect. The present paper reports more formal statistical properties. The results are intended primarily to guide the choice of key tuning parameters. The Royal Society Publishing 2018-07 2018-07-04 /pmc/articles/PMC6083238/ /pubmed/30108456 http://dx.doi.org/10.1098/rspa.2017.0631 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Battey, H. S. Cox, D. R. Large numbers of explanatory variables: a probabilistic assessment |
title | Large numbers of explanatory variables: a probabilistic assessment |
title_full | Large numbers of explanatory variables: a probabilistic assessment |
title_fullStr | Large numbers of explanatory variables: a probabilistic assessment |
title_full_unstemmed | Large numbers of explanatory variables: a probabilistic assessment |
title_short | Large numbers of explanatory variables: a probabilistic assessment |
title_sort | large numbers of explanatory variables: a probabilistic assessment |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083238/ https://www.ncbi.nlm.nih.gov/pubmed/30108456 http://dx.doi.org/10.1098/rspa.2017.0631 |
work_keys_str_mv | AT batteyhs largenumbersofexplanatoryvariablesaprobabilisticassessment AT coxdr largenumbersofexplanatoryvariablesaprobabilisticassessment |