Cargando…
Large numbers of explanatory variables: a probabilistic assessment
Recently, Cox and Battey (2017 Proc. Natl Acad. Sci. USA 114, 8592–8595 (doi:10.1073/pnas.1703764114)) outlined a procedure for regression analysis when there are a small number of study individuals and a large number of potential explanatory variables, but relatively few of the latter have a real e...
Autores principales: | Battey, H. S., Cox, D. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083238/ https://www.ncbi.nlm.nih.gov/pubmed/30108456 http://dx.doi.org/10.1098/rspa.2017.0631 |
Ejemplares similares
-
The number needed to treat adjusted for explanatory variables in regression and survival analysis: Theory and application
por: Vancak, Valentin, et al.
Publicado: (2022) -
Mixing sequences of random variables and probabilistic number theory
por: Philipp, Walter
Publicado: (1971) -
Probabilistic number theory
por: Elliott, P D T A
Publicado: (1979) -
Probabilistic number theory
por: Elliott, P D T A
Publicado: (1980) -
COVID-19 deaths: Which explanatory variables matter the most?
por: Riley, Pete, et al.
Publicado: (2022)