Cargando…
Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses
Emerging evidence suggests that cellular metabolism plays a critical role in regulating immune activation. Alterations in energy and lipid and amino acid metabolism have been shown to contribute to type I interferon (IFN) responses in macrophages, but the relationship between metabolic reprogramming...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083555/ https://www.ncbi.nlm.nih.gov/pubmed/30147442 http://dx.doi.org/10.1155/2018/5906819 |
_version_ | 1783345998969438208 |
---|---|
author | Ahmed, Duale Jaworski, Allison Roy, David Willmore, William Golshani, Ashkan Cassol, Edana |
author_facet | Ahmed, Duale Jaworski, Allison Roy, David Willmore, William Golshani, Ashkan Cassol, Edana |
author_sort | Ahmed, Duale |
collection | PubMed |
description | Emerging evidence suggests that cellular metabolism plays a critical role in regulating immune activation. Alterations in energy and lipid and amino acid metabolism have been shown to contribute to type I interferon (IFN) responses in macrophages, but the relationship between metabolic reprogramming and the establishment of early antiviral function remains poorly defined. Here, we used transcriptional profiling datasets to develop global metabolic signatures associated with early IFN-α responses in two primary macrophage model systems: mouse bone marrow-derived macrophages (BMM) and human monocyte-derived macrophages (MDM). Short-term stimulation with IFN-α (<4 hours) was associated with significant metabolic rewiring, with >500 metabolic genes altered in mouse and human macrophage models. Pathway and network analysis identified alterations in genes associated with cellular bioenergetics, cellular oxidant status, cAMP/AMP and cGMP/GMP ratios, branched chain amino acid catabolism, cell membrane composition, fatty acid synthesis, and β-oxidation as key features of early IFN-α responses. These changes may have important implications for initial establishment of antiviral function in these cells. |
format | Online Article Text |
id | pubmed-6083555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-60835552018-08-26 Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses Ahmed, Duale Jaworski, Allison Roy, David Willmore, William Golshani, Ashkan Cassol, Edana Mediators Inflamm Research Article Emerging evidence suggests that cellular metabolism plays a critical role in regulating immune activation. Alterations in energy and lipid and amino acid metabolism have been shown to contribute to type I interferon (IFN) responses in macrophages, but the relationship between metabolic reprogramming and the establishment of early antiviral function remains poorly defined. Here, we used transcriptional profiling datasets to develop global metabolic signatures associated with early IFN-α responses in two primary macrophage model systems: mouse bone marrow-derived macrophages (BMM) and human monocyte-derived macrophages (MDM). Short-term stimulation with IFN-α (<4 hours) was associated with significant metabolic rewiring, with >500 metabolic genes altered in mouse and human macrophage models. Pathway and network analysis identified alterations in genes associated with cellular bioenergetics, cellular oxidant status, cAMP/AMP and cGMP/GMP ratios, branched chain amino acid catabolism, cell membrane composition, fatty acid synthesis, and β-oxidation as key features of early IFN-α responses. These changes may have important implications for initial establishment of antiviral function in these cells. Hindawi 2018-07-25 /pmc/articles/PMC6083555/ /pubmed/30147442 http://dx.doi.org/10.1155/2018/5906819 Text en Copyright © 2018 Duale Ahmed et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ahmed, Duale Jaworski, Allison Roy, David Willmore, William Golshani, Ashkan Cassol, Edana Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses |
title | Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses |
title_full | Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses |
title_fullStr | Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses |
title_full_unstemmed | Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses |
title_short | Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses |
title_sort | transcriptional profiling suggests extensive metabolic rewiring of human and mouse macrophages during early interferon alpha responses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083555/ https://www.ncbi.nlm.nih.gov/pubmed/30147442 http://dx.doi.org/10.1155/2018/5906819 |
work_keys_str_mv | AT ahmedduale transcriptionalprofilingsuggestsextensivemetabolicrewiringofhumanandmousemacrophagesduringearlyinterferonalpharesponses AT jaworskiallison transcriptionalprofilingsuggestsextensivemetabolicrewiringofhumanandmousemacrophagesduringearlyinterferonalpharesponses AT roydavid transcriptionalprofilingsuggestsextensivemetabolicrewiringofhumanandmousemacrophagesduringearlyinterferonalpharesponses AT willmorewilliam transcriptionalprofilingsuggestsextensivemetabolicrewiringofhumanandmousemacrophagesduringearlyinterferonalpharesponses AT golshaniashkan transcriptionalprofilingsuggestsextensivemetabolicrewiringofhumanandmousemacrophagesduringearlyinterferonalpharesponses AT cassoledana transcriptionalprofilingsuggestsextensivemetabolicrewiringofhumanandmousemacrophagesduringearlyinterferonalpharesponses |