Cargando…

NMR-based metabolomic profiling of Peganum harmala L. reveals dynamic variations between different growth stages

Xerophytes play an active role in preventing soil denudation and desertification in arid and semi-arid areas. Peganum harmala L. (Zygophyllaceae family), a seasonally growing, poisonous and drought-tolerant plant, is widely distributed in the Xinjiang Uygur Autonomous Region and used as a traditiona...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yinping, He, Qing, Geng, Zhufeng, Du, Shushan, Deng, Zhiwei, Hasi, Eerdun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083650/
https://www.ncbi.nlm.nih.gov/pubmed/30109044
http://dx.doi.org/10.1098/rsos.171722
Descripción
Sumario:Xerophytes play an active role in preventing soil denudation and desertification in arid and semi-arid areas. Peganum harmala L. (Zygophyllaceae family), a seasonally growing, poisonous and drought-tolerant plant, is widely distributed in the Xinjiang Uygur Autonomous Region and used as a traditional herbal medicine as well as, in winter, a fodder source. Previous research has focused on the pharmacological activity of isolated compounds and stress responses to growth environments. However, the metabolic profile of P. harmala and variations in its metabolites, including medicinally active and stress resistance components, have not been illustrated during different growth stages. Here, we collected plant samples in May, August, October and December. We determined the metabolic composition of methanol extracts using NMR spectroscopy, and comparisons of four growth stages were accomplished by applying statistical analysis. The results showed that vasicine, choline and sucrose were significantly elevated in samples harvested in May. Significantly higher amounts of betaine, lysine, 4-hydroxyisoleucine and proline were found in samples collected in August than in samples collected in other months, and the concentrations of phosphorylcholine, glucose, acetic acid and vasicinone were highest in December. The relationships between differential biomarkers and plant physiological states affected by diverse growth environmental factors were discussed. Our result deepened the understanding of metabolic mechanisms in plant development and confirmed the advantage of using NMR-based metabolomic treatments in quality evaluation when P. harmala is used for different purposes.