Cargando…
Parental and offspring larval diets interact to influence life-history traits and infection with dengue virus in Aedes aegypti
The environmental conditions experienced by parents can influence offspring phenotype along with the conditions experienced by offspring. These parental effects are clear in organisms that display parental care and are less clear in other organisms. Here, we consider effects of parental and offsprin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083674/ https://www.ncbi.nlm.nih.gov/pubmed/30109101 http://dx.doi.org/10.1098/rsos.180539 |
Sumario: | The environmental conditions experienced by parents can influence offspring phenotype along with the conditions experienced by offspring. These parental effects are clear in organisms that display parental care and are less clear in other organisms. Here, we consider effects of parental and offspring larval nutrition on offspring development time, survivorship and infection with dengue virus in Aedes aegypti, the mosquito vector of dengue, chikungunya, yellow fever and Zika. Parents were raised on either high or low larval detritus inputs with subsequent offspring being divided into two groups, one receiving high nutrients and the other low. Low nutrient females from low nutrient parents (LL) developed significantly slower than those from high nutrient parents (HL). Females from all parent by offspring nutrient treatment groups were equally likely to become infected with dengue virus at 24 h, 3 days and 14 days. After 14 days, high nutrient females from low nutrient parents (LH) had 11 times higher viral titres and more disseminated infections than high nutrient females from high nutrient parents (HH). These results suggest that carry-over environmental stress from the parental generation can influence life histories and arbovirus infection in Ae. aegypti females. We found males to be robust to the life-history parameters measured, suggesting sex-specific differences which may relate to their lower nutrient requirements for metamorphosis. |
---|