Cargando…
Decomposing the effects of ocean environments on predator–prey body-size relationships in food webs
Body-size relationships between predators and their prey are important in ecological studies because they reflect the structure and function of food webs. Inspired by studies on the impact of global warming on food webs, the effects of temperature on body-size relationships have been widely investig...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083727/ https://www.ncbi.nlm.nih.gov/pubmed/30109114 http://dx.doi.org/10.1098/rsos.180707 |
Sumario: | Body-size relationships between predators and their prey are important in ecological studies because they reflect the structure and function of food webs. Inspired by studies on the impact of global warming on food webs, the effects of temperature on body-size relationships have been widely investigated; however, the impact of environmental factors on body-size relationships has not been fully evaluated because climate warming affects various ocean environments. Thus, here, we comprehensively investigated the effects of ocean environments and predator–prey body-size relationships by integrating a large-scale dataset of predator–prey body-size relationships in marine food webs with global oceanographic data. We showed that various oceanographic parameters influence prey size selection. In particular, oxygen concentration, primary production and salinity, in addition to temperature, significantly alter body-size relationships. Furthermore, we demonstrated that variability (seasonality) of ocean environments significantly affects body-size relationships. The effects of ocean environments on body-size relationships were generally remarkable for small body sizes, but were also significant for large body sizes and were relatively weak for intermediate body sizes, in the cases of temperature seasonality, oxygen concentration and salinity variability. These findings break down the complex effects of ocean environments on body-size relationships, advancing our understanding of how ocean environments influence the structure and functioning of food webs. |
---|