Cargando…
Economic Analysis as a Basis for Large-Scale Nitrogen Control Decisions: Reducing Nitrogen Loads to the Gulf of Mexico
Economic analysis can be a guide to determining the level of actions taken to reduce nitrogen (N) losses and reduce environmental risk in a cost-effective manner while also allowing consideration of relative costs of controls to various groups. The biophysical science of N control, especially from n...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
TheScientificWorldJOURNAL
2001
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084031/ https://www.ncbi.nlm.nih.gov/pubmed/12805894 http://dx.doi.org/10.1100/tsw.2001.270 |
Sumario: | Economic analysis can be a guide to determining the level of actions taken to reduce nitrogen (N) losses and reduce environmental risk in a cost-effective manner while also allowing consideration of relative costs of controls to various groups. The biophysical science of N control, especially from nonpoint sources such as agriculture, is not certain. Widespread precise data do not exist for a river basin (or often even for a watershed) that couples management practices and other actions to reduce nonpoint N losses with specific delivery from the basin. The causal relationships are clouded by other factors influencing N flows, such as weather, temperature, and soil characteristics. Even when the science is certain, economic analysis has its own sets of uncertainties and simplifying economic assumptions. The economic analysis of the National Hypoxia Assessment provides an example of economic analysis based on less than complete scientific information that can still provide guidance to policy makers about the economic consequences of alternative approaches. One critical value to policy makers comes from bounding the economic magnitude of the consequences of alternative actions. Another value is the identification of impacts outside the sphere of initial concerns. Such analysis can successfully assess relative impacts of different degrees of control of N losses within the basin as well as outside the basin. It can demonstrate the extent to which costs of control of any one action increase with the intensity of application of control. |
---|