Cargando…

Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period

Bisphenol A (BPA) is commonly manufactured to make polycarbonate plastics and epoxy resins for use in consumer products and packaged goods. BPA has been found in several different types of environmental media (e.g., food, dust, and air). Many cross-sectional studies have frequently detected BPA conc...

Descripción completa

Detalles Bibliográficos
Autores principales: Morgan, Marsha K., Nash, Maliha, Barr, Dana Boyd, Starr, James M., Clifton, M. Scott, Sobus, Jon R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084442/
https://www.ncbi.nlm.nih.gov/pubmed/29268160
http://dx.doi.org/10.1016/j.envint.2017.12.014
_version_ 1783346177773666304
author Morgan, Marsha K.
Nash, Maliha
Barr, Dana Boyd
Starr, James M.
Clifton, M. Scott
Sobus, Jon R.
author_facet Morgan, Marsha K.
Nash, Maliha
Barr, Dana Boyd
Starr, James M.
Clifton, M. Scott
Sobus, Jon R.
author_sort Morgan, Marsha K.
collection PubMed
description Bisphenol A (BPA) is commonly manufactured to make polycarbonate plastics and epoxy resins for use in consumer products and packaged goods. BPA has been found in several different types of environmental media (e.g., food, dust, and air). Many cross-sectional studies have frequently detected BPA concentrations in adult urine samples. However, limited data are available on the temporal variability and important predictors of urinary BPA concentrations in adults. In this work, the major objectives were to: 1) quantify BPA levels in duplicate-diet solid food, drinking water, hard floor surface wipe, and urine samples (first-morning void [FMV], bedtime, and 24-h) collected from adults over a six-week monitoring period; 2) determine the temporal variability of urinary BPA levels using concentration, specific gravity (SG) adjusted, creatinine (CR) adjusted, and excretion rate values, and; 3) examine associations between available study factors and urinary BPA concentrations. In 2009–2011, a convenience sample of 50 adults was recruited from residential settings in North Carolina. The participants completed diaries and collected samples during weeks 1, 2, and/or 6 of a six-week monitoring period. BPA was detected in 38%, 4%, and 99% of the solid food (n = 775), drinking water (n = 50), and surface wipe samples (n = 138), respectively. Total BPA (free plus conjugated) was detected in 98% of the 2477 urine samples. Median urinary BPA levels were 2.07 ng/mL, 2.20 ng/mL-SG, 2.29 ng/mg, and 2.31 ng/min for concentration, SG-adjusted, CR-adjusted, and excretion rate values, respectively. The intraclass correlation coefficient (ICC) estimates for BPA showed poor reproducibility (≤0.35) for all urine sample types and methods over a day, week, and six weeks. CR-adjusted bedtime voids collected over six-weeks required the fewest, realistic number of samples (n = 11) to obtain a reliable biomarker estimate (ICC = 0.80). Results of linear mixed-effects models showed that sex, race, season, and CR-level were all significant predictors (p < 0.05) of the adults’ urinary BPA concentrations. BPA levels in the solid food and surface wipe samples did not contribute significantly to the participants’ urinary BPA concentrations. However, a significant positive relationship was observed between solid food intake and urine-based estimates of BPA dose, when aggregated over 24-h periods. Ingestion of BPA via solid food explained only about 20% of the total dose (at the median of the dose distribution), suggesting that these adults were likely exposed to other major unknown (non-dietary) sources of BPA in their everyday environments.
format Online
Article
Text
id pubmed-6084442
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-60844422018-08-09 Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period Morgan, Marsha K. Nash, Maliha Barr, Dana Boyd Starr, James M. Clifton, M. Scott Sobus, Jon R. Environ Int Article Bisphenol A (BPA) is commonly manufactured to make polycarbonate plastics and epoxy resins for use in consumer products and packaged goods. BPA has been found in several different types of environmental media (e.g., food, dust, and air). Many cross-sectional studies have frequently detected BPA concentrations in adult urine samples. However, limited data are available on the temporal variability and important predictors of urinary BPA concentrations in adults. In this work, the major objectives were to: 1) quantify BPA levels in duplicate-diet solid food, drinking water, hard floor surface wipe, and urine samples (first-morning void [FMV], bedtime, and 24-h) collected from adults over a six-week monitoring period; 2) determine the temporal variability of urinary BPA levels using concentration, specific gravity (SG) adjusted, creatinine (CR) adjusted, and excretion rate values, and; 3) examine associations between available study factors and urinary BPA concentrations. In 2009–2011, a convenience sample of 50 adults was recruited from residential settings in North Carolina. The participants completed diaries and collected samples during weeks 1, 2, and/or 6 of a six-week monitoring period. BPA was detected in 38%, 4%, and 99% of the solid food (n = 775), drinking water (n = 50), and surface wipe samples (n = 138), respectively. Total BPA (free plus conjugated) was detected in 98% of the 2477 urine samples. Median urinary BPA levels were 2.07 ng/mL, 2.20 ng/mL-SG, 2.29 ng/mg, and 2.31 ng/min for concentration, SG-adjusted, CR-adjusted, and excretion rate values, respectively. The intraclass correlation coefficient (ICC) estimates for BPA showed poor reproducibility (≤0.35) for all urine sample types and methods over a day, week, and six weeks. CR-adjusted bedtime voids collected over six-weeks required the fewest, realistic number of samples (n = 11) to obtain a reliable biomarker estimate (ICC = 0.80). Results of linear mixed-effects models showed that sex, race, season, and CR-level were all significant predictors (p < 0.05) of the adults’ urinary BPA concentrations. BPA levels in the solid food and surface wipe samples did not contribute significantly to the participants’ urinary BPA concentrations. However, a significant positive relationship was observed between solid food intake and urine-based estimates of BPA dose, when aggregated over 24-h periods. Ingestion of BPA via solid food explained only about 20% of the total dose (at the median of the dose distribution), suggesting that these adults were likely exposed to other major unknown (non-dietary) sources of BPA in their everyday environments. 2017-12-18 2018-03 /pmc/articles/PMC6084442/ /pubmed/29268160 http://dx.doi.org/10.1016/j.envint.2017.12.014 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Morgan, Marsha K.
Nash, Maliha
Barr, Dana Boyd
Starr, James M.
Clifton, M. Scott
Sobus, Jon R.
Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period
title Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period
title_full Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period
title_fullStr Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period
title_full_unstemmed Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period
title_short Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period
title_sort distribution, variability, and predictors of urinary bisphenol a levels in 50 north carolina adults over a six-week monitoring period
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084442/
https://www.ncbi.nlm.nih.gov/pubmed/29268160
http://dx.doi.org/10.1016/j.envint.2017.12.014
work_keys_str_mv AT morganmarshak distributionvariabilityandpredictorsofurinarybisphenolalevelsin50northcarolinaadultsoverasixweekmonitoringperiod
AT nashmaliha distributionvariabilityandpredictorsofurinarybisphenolalevelsin50northcarolinaadultsoverasixweekmonitoringperiod
AT barrdanaboyd distributionvariabilityandpredictorsofurinarybisphenolalevelsin50northcarolinaadultsoverasixweekmonitoringperiod
AT starrjamesm distributionvariabilityandpredictorsofurinarybisphenolalevelsin50northcarolinaadultsoverasixweekmonitoringperiod
AT cliftonmscott distributionvariabilityandpredictorsofurinarybisphenolalevelsin50northcarolinaadultsoverasixweekmonitoringperiod
AT sobusjonr distributionvariabilityandpredictorsofurinarybisphenolalevelsin50northcarolinaadultsoverasixweekmonitoringperiod