Cargando…

Phenotypic plasticity in response to temperature fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis thaliana

Under current climate change, increasing mean temperatures are not only causing hotter summers, but temperature variability is increasing as well. Phenotypic plasticity can help plants to overcome negative effects of temperature variability and allow them to rapidly adjust traits to adverse conditio...

Descripción completa

Detalles Bibliográficos
Autores principales: Scheepens, J F, Deng, Ying, Bossdorf, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084592/
https://www.ncbi.nlm.nih.gov/pubmed/30109013
http://dx.doi.org/10.1093/aobpla/ply043
Descripción
Sumario:Under current climate change, increasing mean temperatures are not only causing hotter summers, but temperature variability is increasing as well. Phenotypic plasticity can help plants to overcome negative effects of temperature variability and allow them to rapidly adjust traits to adverse conditions. Moreover, genetic variation in such plasticity could provide potential for adaptive evolution in response to changing climate variability. Here, we conducted an experiment with 11 Arabidopsis thaliana genotypes to investigate intraspecific variation in plant responses to two aspects of variable temperature stress: timing and frequency. We found that the timing but not frequency of temperature stress affected the phenology, growth, reproduction and allocation strategy of plants, and that genotypes differed substantially in their responses. Moreover, trait plasticity was positively related to precipitation variability of origin, suggesting an adaptive role of plasticity. Our results indicate that the developmental stage of a plant during heat stress is a key determinant of its response, and that plasticity to temperature variability is an evolving and possibly adaptive trait in natural populations of A. thaliana. More generally, our study demonstrates the usefulness of studying plant responses to climatic variability per se, given that climatic variability is predicted to increase in the future.