Cargando…
Kernelized rank learning for personalized drug recommendation
MOTIVATION: Large-scale screenings of cancer cell lines with detailed molecular profiles against libraries of pharmacological compounds are currently being performed in order to gain a better understanding of the genetic component of drug response and to enhance our ability to recommend therapies gi...
Autores principales: | He, Xiao, Folkman, Lukas, Borgwardt, Karsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084606/ https://www.ncbi.nlm.nih.gov/pubmed/29528376 http://dx.doi.org/10.1093/bioinformatics/bty132 |
Ejemplares similares
-
Efficient Multiple Kernel Learning Algorithms Using Low-Rank Representation
por: Niu, Wenjia, et al.
Publicado: (2017) -
Ranking Support Vector Machine with Kernel Approximation
por: Chen, Kai, et al.
Publicado: (2017) -
Multi-target drug repositioning by bipartite block-wise sparse multi-task learning
por: Li, Limin, et al.
Publicado: (2018) -
Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation
por: Ge, Ting, et al.
Publicado: (2022) -
Cancer module genes ranking using kernelized score functions
por: Re, Matteo, et al.
Publicado: (2012)