Cargando…
The latent geometry of the human protein interaction network
MOTIVATION: A series of recently introduced algorithms and models advocates for the existence of a hyperbolic geometry underlying the network representation of complex systems. Since the human protein interaction network (hPIN) has a complex architecture, we hypothesized that uncovering its latent g...
Autores principales: | Alanis-Lobato, Gregorio, Mier, Pablo, Andrade-Navarro, Miguel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084611/ https://www.ncbi.nlm.nih.gov/pubmed/29635317 http://dx.doi.org/10.1093/bioinformatics/bty206 |
Ejemplares similares
-
Manifold learning and maximum likelihood estimation for hyperbolic network embedding
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2016) -
Efficient embedding of complex networks to hyperbolic space via their Laplacian
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2016) -
HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2017) -
MIPPIE: the mouse integrated protein–protein interaction reference
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2020) -
Evolutionary Study of Disorder in Protein Sequences
por: Kastano, Kristina, et al.
Publicado: (2020)