Cargando…
Increasing Nitrogen Use Efficiency of Corn in Midwestern Cropping Systems
Nitrogen (N) loss from agricultural systems raises concerns about the potential impact of farming practices on environmental quality. N is a critical input to agricultural production. However, there is little understanding of the interactions among crop water use, N application rates, and soil types...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
TheScientificWorldJOURNAL
2001
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084737/ https://www.ncbi.nlm.nih.gov/pubmed/12805822 http://dx.doi.org/10.1100/tsw.2001.352 |
Sumario: | Nitrogen (N) loss from agricultural systems raises concerns about the potential impact of farming practices on environmental quality. N is a critical input to agricultural production. However, there is little understanding of the interactions among crop water use, N application rates, and soil types. This study was designed to quantify these interactions in corn (Zea mays L.) grown in production-size fields in central Iowa on the Clarion-Nicollet-Webster soil association. Seasonal water use varied by soil type and N application rate. Yield varied with N application rate, with the highest average yield obtained at 100 kg ha. N use efficiency (NUE) decreased with increasing N application rates, having values around 50%. Water use efficiency (WUE) decreased as N fertilizer rates increased. Analysis of plant growth patterns showed that in the low organic matter soils (lower water-holding capacities), potential yield was not achieved because of water deficits during the grain-filling period. Using precipitation data coupled with daily water use throughout the season, lower organic matter soils showed these soils began to drain earlier in the spring and continued to drain more water throughout the season. The low NUE in these soils together with increased drainage lead to greater N loss from these soils. Improved management decisions have shown that it is possible to couple water use patterns with N application to increase both WUE and NUE. |
---|