Cargando…
Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO)
OBJECT: To develop a novel approach for highly accelerated Magnetic Resonance Fingerprinting (MRF) acquisition. MATERIALS AND METHODS: The proposed method combines parallel imaging, soft-gating and key-hole approaches to highly accelerate MRF acquisition. Slowly varying flip angles (FA), commonly us...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084944/ https://www.ncbi.nlm.nih.gov/pubmed/30092033 http://dx.doi.org/10.1371/journal.pone.0201808 |
_version_ | 1783346254980317184 |
---|---|
author | Cruz, Gastao Schneider, Torben Bruijnen, Tom Gaspar, Andreia S. Botnar, René M. Prieto, Claudia |
author_facet | Cruz, Gastao Schneider, Torben Bruijnen, Tom Gaspar, Andreia S. Botnar, René M. Prieto, Claudia |
author_sort | Cruz, Gastao |
collection | PubMed |
description | OBJECT: To develop a novel approach for highly accelerated Magnetic Resonance Fingerprinting (MRF) acquisition. MATERIALS AND METHODS: The proposed method combines parallel imaging, soft-gating and key-hole approaches to highly accelerate MRF acquisition. Slowly varying flip angles (FA), commonly used during MRF acquisition, lead to a smooth change in the signal contrast of consecutive time-point images. This assumption enables sharing of high frequency data between different time-points, similar to what is done in some dynamic MR imaging methods such as key-hole. The proposed approach exploits this information using a SOft-weighted key-HOle (MRF-SOHO) reconstruction to achieve high acceleration factors and/or increased resolution without compromising image quality or increasing scan time. MRF-SOHO was validated on a standard T(1)/T(2) phantom and in in-vivo brain acquisitions reconstructing T(1), T(2) and proton density parametric maps. RESULTS: Accelerated MRF-SOHO using less data per time-point and less time-point images enabled a considerable reduction in scan time (up to 4.6x), while obtaining similar T(1) and T(2) accuracy and precision when compared to zero-filled MRF reconstruction. For the same number of spokes and time-points, the proposed method yielded an enhanced performance in quantifying parameters than the zero-filled MRF reconstruction, which was verified with 2, 1 and 0.7 (sub-millimetre) resolutions. CONCLUSION: The proposed MRF-SOHO enabled a 4.6x scan time reduction for an in-plane spatial resolution of 2x2 mm(2) when compared to zero-filled MRF and enabled sub-millimetric (0.7x0.7 mm(2)) resolution MRF. |
format | Online Article Text |
id | pubmed-6084944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60849442018-08-18 Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO) Cruz, Gastao Schneider, Torben Bruijnen, Tom Gaspar, Andreia S. Botnar, René M. Prieto, Claudia PLoS One Research Article OBJECT: To develop a novel approach for highly accelerated Magnetic Resonance Fingerprinting (MRF) acquisition. MATERIALS AND METHODS: The proposed method combines parallel imaging, soft-gating and key-hole approaches to highly accelerate MRF acquisition. Slowly varying flip angles (FA), commonly used during MRF acquisition, lead to a smooth change in the signal contrast of consecutive time-point images. This assumption enables sharing of high frequency data between different time-points, similar to what is done in some dynamic MR imaging methods such as key-hole. The proposed approach exploits this information using a SOft-weighted key-HOle (MRF-SOHO) reconstruction to achieve high acceleration factors and/or increased resolution without compromising image quality or increasing scan time. MRF-SOHO was validated on a standard T(1)/T(2) phantom and in in-vivo brain acquisitions reconstructing T(1), T(2) and proton density parametric maps. RESULTS: Accelerated MRF-SOHO using less data per time-point and less time-point images enabled a considerable reduction in scan time (up to 4.6x), while obtaining similar T(1) and T(2) accuracy and precision when compared to zero-filled MRF reconstruction. For the same number of spokes and time-points, the proposed method yielded an enhanced performance in quantifying parameters than the zero-filled MRF reconstruction, which was verified with 2, 1 and 0.7 (sub-millimetre) resolutions. CONCLUSION: The proposed MRF-SOHO enabled a 4.6x scan time reduction for an in-plane spatial resolution of 2x2 mm(2) when compared to zero-filled MRF and enabled sub-millimetric (0.7x0.7 mm(2)) resolution MRF. Public Library of Science 2018-08-09 /pmc/articles/PMC6084944/ /pubmed/30092033 http://dx.doi.org/10.1371/journal.pone.0201808 Text en © 2018 Cruz et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Cruz, Gastao Schneider, Torben Bruijnen, Tom Gaspar, Andreia S. Botnar, René M. Prieto, Claudia Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO) |
title | Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO) |
title_full | Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO) |
title_fullStr | Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO) |
title_full_unstemmed | Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO) |
title_short | Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO) |
title_sort | accelerated magnetic resonance fingerprinting using soft-weighted key-hole (mrf-soho) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084944/ https://www.ncbi.nlm.nih.gov/pubmed/30092033 http://dx.doi.org/10.1371/journal.pone.0201808 |
work_keys_str_mv | AT cruzgastao acceleratedmagneticresonancefingerprintingusingsoftweightedkeyholemrfsoho AT schneidertorben acceleratedmagneticresonancefingerprintingusingsoftweightedkeyholemrfsoho AT bruijnentom acceleratedmagneticresonancefingerprintingusingsoftweightedkeyholemrfsoho AT gasparandreias acceleratedmagneticresonancefingerprintingusingsoftweightedkeyholemrfsoho AT botnarrenem acceleratedmagneticresonancefingerprintingusingsoftweightedkeyholemrfsoho AT prietoclaudia acceleratedmagneticresonancefingerprintingusingsoftweightedkeyholemrfsoho |