Cargando…
The positioning of the asymmetric septum during sporulation in Bacillus subtilis
Probably one of the most controversial questions about the cell division of Bacillus subtilis, a rod-shaped bacterium, concerns the mechanism that ensures correct division septum placement–at mid-cell during vegetative growth but closer to one end during sporulation. In general, bacteria multiply by...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084994/ https://www.ncbi.nlm.nih.gov/pubmed/30092000 http://dx.doi.org/10.1371/journal.pone.0201979 |
_version_ | 1783346267043135488 |
---|---|
author | Barák, Imrich Muchová, Katarína |
author_facet | Barák, Imrich Muchová, Katarína |
author_sort | Barák, Imrich |
collection | PubMed |
description | Probably one of the most controversial questions about the cell division of Bacillus subtilis, a rod-shaped bacterium, concerns the mechanism that ensures correct division septum placement–at mid-cell during vegetative growth but closer to one end during sporulation. In general, bacteria multiply by binary fission, in which the division septum forms almost exactly at the cell centre. How the division machinery achieves such accuracy is a question of continuing interest. We understand in some detail how this is achieved during vegetative growth in Escherichia coli and B. subtilis, where two main negative regulators, nucleoid occlusion and the Min system, help to determine the division site, but we still do not know exactly how the asymmetric septation site is determined during sporulation in B. subtilis. Clearly, the inhibitory effects of the nucleoid occlusion and Min system on polar division have to be overcome. We evaluated the positioning of the asymmetric septum and its accuracy by statistical analysis of the site of septation. We also clarified the role of SpoIIE, RefZ and MinCD on the accuracy of this process. We determined that the sporulation septum forms approximately (1)/(6) of a cell length from one of the cell poles with high precision and that SpoIIE, RefZ and MinCD have a crucial role in precisely localizing the sporulation septum. Our results strongly support the idea that asymmetric septum formation is a very precise and highly controlled process regulated by a still unknown mechanism. |
format | Online Article Text |
id | pubmed-6084994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60849942018-08-18 The positioning of the asymmetric septum during sporulation in Bacillus subtilis Barák, Imrich Muchová, Katarína PLoS One Research Article Probably one of the most controversial questions about the cell division of Bacillus subtilis, a rod-shaped bacterium, concerns the mechanism that ensures correct division septum placement–at mid-cell during vegetative growth but closer to one end during sporulation. In general, bacteria multiply by binary fission, in which the division septum forms almost exactly at the cell centre. How the division machinery achieves such accuracy is a question of continuing interest. We understand in some detail how this is achieved during vegetative growth in Escherichia coli and B. subtilis, where two main negative regulators, nucleoid occlusion and the Min system, help to determine the division site, but we still do not know exactly how the asymmetric septation site is determined during sporulation in B. subtilis. Clearly, the inhibitory effects of the nucleoid occlusion and Min system on polar division have to be overcome. We evaluated the positioning of the asymmetric septum and its accuracy by statistical analysis of the site of septation. We also clarified the role of SpoIIE, RefZ and MinCD on the accuracy of this process. We determined that the sporulation septum forms approximately (1)/(6) of a cell length from one of the cell poles with high precision and that SpoIIE, RefZ and MinCD have a crucial role in precisely localizing the sporulation septum. Our results strongly support the idea that asymmetric septum formation is a very precise and highly controlled process regulated by a still unknown mechanism. Public Library of Science 2018-08-09 /pmc/articles/PMC6084994/ /pubmed/30092000 http://dx.doi.org/10.1371/journal.pone.0201979 Text en © 2018 Barák, Muchová http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Barák, Imrich Muchová, Katarína The positioning of the asymmetric septum during sporulation in Bacillus subtilis |
title | The positioning of the asymmetric septum during sporulation in Bacillus subtilis |
title_full | The positioning of the asymmetric septum during sporulation in Bacillus subtilis |
title_fullStr | The positioning of the asymmetric septum during sporulation in Bacillus subtilis |
title_full_unstemmed | The positioning of the asymmetric septum during sporulation in Bacillus subtilis |
title_short | The positioning of the asymmetric septum during sporulation in Bacillus subtilis |
title_sort | positioning of the asymmetric septum during sporulation in bacillus subtilis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084994/ https://www.ncbi.nlm.nih.gov/pubmed/30092000 http://dx.doi.org/10.1371/journal.pone.0201979 |
work_keys_str_mv | AT barakimrich thepositioningoftheasymmetricseptumduringsporulationinbacillussubtilis AT muchovakatarina thepositioningoftheasymmetricseptumduringsporulationinbacillussubtilis AT barakimrich positioningoftheasymmetricseptumduringsporulationinbacillussubtilis AT muchovakatarina positioningoftheasymmetricseptumduringsporulationinbacillussubtilis |