Cargando…
Construction of an Electrocardiogram Database Including 12 Lead Waveforms
OBJECTIVES: Electrocardiogram (ECG) data are important for the study of cardiovascular disease and adverse drug reactions. Although the development of analytical techniques such as machine learning has improved our ability to extract useful information from ECGs, there is a lack of easily available...
Autores principales: | Chung, Dahee, Choi, Junggu, Jang, Jong-Hwan, Kim, Tae Young, Byun, JungHyun, Park, Hojun, Lim, Hong-Seok, Park, Rae Woong, Yoon, Dukyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085199/ https://www.ncbi.nlm.nih.gov/pubmed/30109157 http://dx.doi.org/10.4258/hir.2018.24.3.242 |
Ejemplares similares
-
ECG-ViEW II, a freely accessible electrocardiogram database
por: Kim, Young-Gun, et al.
Publicado: (2017) -
Extracting information from free-text electronic patient records to identify practice-based evidence of the performance of coronary stents
por: Kim, Yoon Seob, et al.
Publicado: (2017) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Detection of Hemodynamic Status Using an Analytic Based on an Electrocardiogram Lead Waveform
por: Schmitzberger, Florian F., et al.
Publicado: (2022)