Cargando…

Long-term trend of and correlation between vegetation greenness and climate variables in Asia based on satellite data

Satellite data has been used to ascertain trends and correlations between climate change and vegetation greenness in Asia. Our study utilized 33-year (1982–2014) AVHRR-GIMMS (Advanced Very High Resolution Radiometer–Global Inventory Modelling and Mapping Studies) NDVI3g and CRU TS (Climatic Research...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamchin, Munkhnasan, Lee, Woo-Kyun, Jeon, Seong Woo, Wang, Sonam Wangyel, Lim, Chul Hee, Song, Cholho, Sung, Minjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085232/
https://www.ncbi.nlm.nih.gov/pubmed/30105213
http://dx.doi.org/10.1016/j.mex.2018.07.006
Descripción
Sumario:Satellite data has been used to ascertain trends and correlations between climate change and vegetation greenness in Asia. Our study utilized 33-year (1982–2014) AVHRR-GIMMS (Advanced Very High Resolution Radiometer–Global Inventory Modelling and Mapping Studies) NDVI3g and CRU TS (Climatic Research Unit Time Series) climate variable (temperature, rainfall, and potential evapotranspiration) time series. First, we estimated the overall trends for vegetation greenness and climate variables and analyzed trends during summer (April–October), winter (November–March), and the entire year. Second, we carried out correlation and regression analyses to detect correlations between vegetation greenness and climate variables. Our study revealed an increasing trend (0.05–0.28) in temperature in northeastern India (bordering Bhutan), Southeast Bhutan, Yunnan Province of China, Northern Myanmar, Central Cambodia, northern Laos, southern Vietnam, eastern Iran, southern Afghanistan, and southern Pakistan. However, a decreasing trend in temperature (0.00 to −0.04) was noted for specific areas in southern Asia including Central Myanmar and northwestern Thailand and the Guangxi, Southern Gansu, and Shandong provinces of China. The results also indicated an increasing trend for evapotranspiration and air temperature accompanied by a decreasing trend for vegetation greenness and rainfall. Increases in both the mean annual signal and annual cycle occurred in the forest, herbaceous, and cropland areas of India, Northwest China, and eastern Kazakhstan. The temperature was found to be the main driver of the changing vegetation greenness in Kazakhstan, northern Mongolia, Northeast and Central China, North Korea, South Korea, and northern Japan, showing an indirect relationship (R = 0.84–0.96). • Temperature is the main climatic variable affecting vegetation greenness. • A downward trend in vegetation greenness was observed during summer (April–October). • Temperature showed an upward trend across many areas of Asia during the study period. • In winter, rainfall showed downward and upward trends in different parts of Asia.