Cargando…
The Performance of an Oral Microbiome Biomarker Panel in Predicting Oral Cavity and Oropharyngeal Cancers
The oral microbiome can play a role in the instigation and progression of oral diseases that can manifest into other systemic conditions. These associations encourage the exploration of oral dysbiosis leading to the pathogenesis of cancers. In this study, oral rinse was used to characterize the oral...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085444/ https://www.ncbi.nlm.nih.gov/pubmed/30123780 http://dx.doi.org/10.3389/fcimb.2018.00267 |
Sumario: | The oral microbiome can play a role in the instigation and progression of oral diseases that can manifest into other systemic conditions. These associations encourage the exploration of oral dysbiosis leading to the pathogenesis of cancers. In this study, oral rinse was used to characterize the oral microbiome fluctuation associated with oral cavity cancer (OCC) and oropharyngeal cancers (OPC). The study cohort consists of normal healthy controls (n = 10, between 20 and 30 years of age; n = 10, above 50 years of age), high-risk individuals (n = 11, above 50 years of age with bad oral hygiene and/or oral diseases) and OCC and OPC patients (n = 31, HPV-positive; n = 21, HPV-negative). Oral rinse samples were analyzed using 16S rRNA gene amplicon sequencing on the MiSeq platform. Kruskal–Wallis rank test was used to identify genera associated with OCC and OPC. A logistic regression analysis was carried out to determine the performance of these genera as a biomarker panel to predict OCC and OPC. In addition, a two-fold cross-validation with a bootstrap procedure was carried out in R to investigate how well the panel would perform in an emulated clinical scenario. Our data indicate that the oral microbiome is able to predict the presence of OCC and OPC with sensitivity and specificity of 100 and 90%, respectively. With further validation, the panel could potentially be implemented into clinical diagnostic and prognostic workflows for OCC and OPC. |
---|