Cargando…
Using Supervised Learning Methods for Gene Selection in RNA-Seq Case-Control Studies
Whole transcriptome studies typically yield large amounts of data, with expression values for all genes or transcripts of the genome. The search for genes of interest in a particular study setting can thus be a daunting task, usually relying on automated computational methods. Moreover, most biologi...
Autores principales: | Wenric, Stephane, Shemirani, Ruhollah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085558/ https://www.ncbi.nlm.nih.gov/pubmed/30123241 http://dx.doi.org/10.3389/fgene.2018.00297 |
Ejemplares similares
-
AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders
por: Xu, Li, et al.
Publicado: (2021) -
Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2019) -
DREAMSeq: An Improved Method for Analyzing Differentially Expressed Genes in RNA-seq Data
por: Gao, Zhihua, et al.
Publicado: (2018) -
Extensive Variation in Gene Expression is Revealed in 13 Fertility-Related Genes Using RNA-Seq, ISO-Seq, and CAGE-Seq From Brahman Cattle
por: Ross, Elizabeth M., et al.
Publicado: (2022) -
Corrigendum: Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2020)