Cargando…
Strategy for efficient generation of numerous full-length cDNA clones of classical swine fever virus for haplotyping
BACKGROUND: Direct molecular cloning of full-length cDNAs derived from viral RNA is an approach to identify the individual viral genomes within a virus population. This enables characterization of distinct viral haplotypes present during infection. RESULTS: In this study, we recover individual genom...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085635/ https://www.ncbi.nlm.nih.gov/pubmed/30092775 http://dx.doi.org/10.1186/s12864-018-4971-8 |
Sumario: | BACKGROUND: Direct molecular cloning of full-length cDNAs derived from viral RNA is an approach to identify the individual viral genomes within a virus population. This enables characterization of distinct viral haplotypes present during infection. RESULTS: In this study, we recover individual genomes of classical swine fever virus (CSFV), present in a pig infected with vKos that was rescued from a cDNA clone corresponding to the highly virulent CSFV Koslov strain. Full-length cDNA amplicons (ca. 12.3 kb) were made by long RT-PCR, using RNA extracted from serum, and inserted directly into a cloning vector prior to detailed characterization of the individual viral genome sequences. The amplicons used for cloning were deep sequenced, which revealed low level sequence variation (< 5%) scattered across the genome consistent with the clone-derived origin of vKos. Numerous full-length cDNA clones were generated using these amplicons and full-genome sequencing of individual cDNA clones revealed insights into the virus diversity and the haplotypes present during infection. Most cDNA clones were unique, containing several single-nucleotide polymorphisms, and phylogenetic reconstruction revealed a low degree of order. CONCLUSIONS: This optimized methodology enables highly efficient construction of full-length cDNA clones corresponding to individual viral genomes present within RNA virus populations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-4971-8) contains supplementary material, which is available to authorized users. |
---|