Cargando…
Reproducing Polychronization: A Guide to Maximizing the Reproducibility of Spiking Network Models
Any modeler who has attempted to reproduce a spiking neural network model from its description in a paper has discovered what a painful endeavor this is. Even when all parameters appear to have been specified, which is rare, typically the initial attempt to reproduce the network does not yield resul...
Autores principales: | Pauli, Robin, Weidel, Philipp, Kunkel, Susanne, Morrison, Abigail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085985/ https://www.ncbi.nlm.nih.gov/pubmed/30123121 http://dx.doi.org/10.3389/fninf.2018.00046 |
Ejemplares similares
-
Enhanced polychronization in a spiking network with metaplasticity
por: Guise, Mira, et al.
Publicado: (2015) -
An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation
por: Wang, Runchun, et al.
Publicado: (2013) -
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021) -
Toward reproducible models of sequence learning: replication and analysis of a modular spiking network with reward-based learning
por: Zajzon, Barna, et al.
Publicado: (2023) -
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation
por: Wang, Runchun M., et al.
Publicado: (2014)