Cargando…
Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling
Examining the dynamics of an agent in the tumor microenvironment can offer critical insights to the influx rate and accumulation of the agent. Intratumoral kinetic characterization in the in vivo setting can further elicudate distribution patterns and tumor microenvironment. Dynamic contrast-enhance...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086408/ https://www.ncbi.nlm.nih.gov/pubmed/30105204 http://dx.doi.org/10.1016/j.pacs.2018.07.003 |
_version_ | 1783346506752851968 |
---|---|
author | Xiao, Ted G. Weis, Jared A. Gayzik, F. Scott Thomas, Alexandra Chiba, Akiko Gurcan, Metin N. Topaloglu, Umit Samykutty, Abhilash McNally, Lacey R. |
author_facet | Xiao, Ted G. Weis, Jared A. Gayzik, F. Scott Thomas, Alexandra Chiba, Akiko Gurcan, Metin N. Topaloglu, Umit Samykutty, Abhilash McNally, Lacey R. |
author_sort | Xiao, Ted G. |
collection | PubMed |
description | Examining the dynamics of an agent in the tumor microenvironment can offer critical insights to the influx rate and accumulation of the agent. Intratumoral kinetic characterization in the in vivo setting can further elicudate distribution patterns and tumor microenvironment. Dynamic contrast-enhanced Multispectral Optoacoustic Tomographic imaging (DCE-MSOT) acquires serial MSOT images with the administration of an exogenous contrast agent over time. We tracked the dynamics of a tumor-targeted contrast agent, HypoxiSense 680 (HS680), in breast xenograft mouse models using MSOT. Arterial input function (AIF) approach with MSOT imaging allowed for tracking HS680 dynamics within the mouse. The optoacoustic signal for HS680 was quantified using the ROI function in the ViewMSOT software. A two-compartment pharmacokinetics (PK) model constructed in MATLAB to fit rate parameters. The contrast influx (k(in)) and outflux (k(out)) rate constants predicted are k(in) = 1.96 × 10(−2) s(-1) and k(out) = 9.5 × 10(-3) s(-1) (R = 0.9945). |
format | Online Article Text |
id | pubmed-6086408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-60864082018-08-13 Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling Xiao, Ted G. Weis, Jared A. Gayzik, F. Scott Thomas, Alexandra Chiba, Akiko Gurcan, Metin N. Topaloglu, Umit Samykutty, Abhilash McNally, Lacey R. Photoacoustics Research Article Examining the dynamics of an agent in the tumor microenvironment can offer critical insights to the influx rate and accumulation of the agent. Intratumoral kinetic characterization in the in vivo setting can further elicudate distribution patterns and tumor microenvironment. Dynamic contrast-enhanced Multispectral Optoacoustic Tomographic imaging (DCE-MSOT) acquires serial MSOT images with the administration of an exogenous contrast agent over time. We tracked the dynamics of a tumor-targeted contrast agent, HypoxiSense 680 (HS680), in breast xenograft mouse models using MSOT. Arterial input function (AIF) approach with MSOT imaging allowed for tracking HS680 dynamics within the mouse. The optoacoustic signal for HS680 was quantified using the ROI function in the ViewMSOT software. A two-compartment pharmacokinetics (PK) model constructed in MATLAB to fit rate parameters. The contrast influx (k(in)) and outflux (k(out)) rate constants predicted are k(in) = 1.96 × 10(−2) s(-1) and k(out) = 9.5 × 10(-3) s(-1) (R = 0.9945). Elsevier 2018-07-27 /pmc/articles/PMC6086408/ /pubmed/30105204 http://dx.doi.org/10.1016/j.pacs.2018.07.003 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Xiao, Ted G. Weis, Jared A. Gayzik, F. Scott Thomas, Alexandra Chiba, Akiko Gurcan, Metin N. Topaloglu, Umit Samykutty, Abhilash McNally, Lacey R. Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling |
title | Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling |
title_full | Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling |
title_fullStr | Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling |
title_full_unstemmed | Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling |
title_short | Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling |
title_sort | applying dynamic contrast enhanced msot imaging to intratumoral pharmacokinetic modeling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086408/ https://www.ncbi.nlm.nih.gov/pubmed/30105204 http://dx.doi.org/10.1016/j.pacs.2018.07.003 |
work_keys_str_mv | AT xiaotedg applyingdynamiccontrastenhancedmsotimagingtointratumoralpharmacokineticmodeling AT weisjareda applyingdynamiccontrastenhancedmsotimagingtointratumoralpharmacokineticmodeling AT gayzikfscott applyingdynamiccontrastenhancedmsotimagingtointratumoralpharmacokineticmodeling AT thomasalexandra applyingdynamiccontrastenhancedmsotimagingtointratumoralpharmacokineticmodeling AT chibaakiko applyingdynamiccontrastenhancedmsotimagingtointratumoralpharmacokineticmodeling AT gurcanmetinn applyingdynamiccontrastenhancedmsotimagingtointratumoralpharmacokineticmodeling AT topalogluumit applyingdynamiccontrastenhancedmsotimagingtointratumoralpharmacokineticmodeling AT samykuttyabhilash applyingdynamiccontrastenhancedmsotimagingtointratumoralpharmacokineticmodeling AT mcnallylaceyr applyingdynamiccontrastenhancedmsotimagingtointratumoralpharmacokineticmodeling |