Cargando…
Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells
Translation and mRNA degradation are intimately connected, yet the mechanisms that link them are not fully understood. Here, we studied these mechanisms in embryonic stem cells (ESCs). Transcripts showed a wide range of stabilities, which correlated with their relative translation levels and that di...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086665/ https://www.ncbi.nlm.nih.gov/pubmed/30044225 http://dx.doi.org/10.7554/eLife.38014 |
_version_ | 1783346553160728576 |
---|---|
author | Freimer, Jacob W Hu, TJ Blelloch, Robert |
author_facet | Freimer, Jacob W Hu, TJ Blelloch, Robert |
author_sort | Freimer, Jacob W |
collection | PubMed |
description | Translation and mRNA degradation are intimately connected, yet the mechanisms that link them are not fully understood. Here, we studied these mechanisms in embryonic stem cells (ESCs). Transcripts showed a wide range of stabilities, which correlated with their relative translation levels and that did not change during early ESC differentiation. The protein DHH1 links translation to mRNA stability in yeast; however, loss of the mammalian homolog, DDX6, in ESCs did not disrupt the correlation across transcripts. Instead, the loss of DDX6 led to upregulated translation of microRNA targets, without concurrent changes in mRNA stability. The Ddx6 knockout cells were phenotypically and molecularly similar to cells lacking all microRNAs (Dgcr8 knockout ESCs). These data show that the loss of DDX6 can separate the two canonical functions of microRNAs: translational repression and transcript destabilization. Furthermore, these data uncover a central role for translational repression independent of transcript destabilization in defining the downstream consequences of microRNA loss. |
format | Online Article Text |
id | pubmed-6086665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-60866652018-08-13 Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells Freimer, Jacob W Hu, TJ Blelloch, Robert eLife Chromosomes and Gene Expression Translation and mRNA degradation are intimately connected, yet the mechanisms that link them are not fully understood. Here, we studied these mechanisms in embryonic stem cells (ESCs). Transcripts showed a wide range of stabilities, which correlated with their relative translation levels and that did not change during early ESC differentiation. The protein DHH1 links translation to mRNA stability in yeast; however, loss of the mammalian homolog, DDX6, in ESCs did not disrupt the correlation across transcripts. Instead, the loss of DDX6 led to upregulated translation of microRNA targets, without concurrent changes in mRNA stability. The Ddx6 knockout cells were phenotypically and molecularly similar to cells lacking all microRNAs (Dgcr8 knockout ESCs). These data show that the loss of DDX6 can separate the two canonical functions of microRNAs: translational repression and transcript destabilization. Furthermore, these data uncover a central role for translational repression independent of transcript destabilization in defining the downstream consequences of microRNA loss. eLife Sciences Publications, Ltd 2018-07-25 /pmc/articles/PMC6086665/ /pubmed/30044225 http://dx.doi.org/10.7554/eLife.38014 Text en © 2018, Freimer et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Chromosomes and Gene Expression Freimer, Jacob W Hu, TJ Blelloch, Robert Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells |
title | Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells |
title_full | Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells |
title_fullStr | Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells |
title_full_unstemmed | Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells |
title_short | Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells |
title_sort | decoupling the impact of micrornas on translational repression versus rna degradation in embryonic stem cells |
topic | Chromosomes and Gene Expression |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086665/ https://www.ncbi.nlm.nih.gov/pubmed/30044225 http://dx.doi.org/10.7554/eLife.38014 |
work_keys_str_mv | AT freimerjacobw decouplingtheimpactofmicrornasontranslationalrepressionversusrnadegradationinembryonicstemcells AT hutj decouplingtheimpactofmicrornasontranslationalrepressionversusrnadegradationinembryonicstemcells AT blellochrobert decouplingtheimpactofmicrornasontranslationalrepressionversusrnadegradationinembryonicstemcells |