Cargando…
Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification
Functional microbeads have been widely applied in molecular identification and other biochemical applications in the past decade, owing to the compatibility with flow cytometry and the commercially available microbeads for a wide range of molecular identification. Nevertheless, there is still a tech...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086689/ https://www.ncbi.nlm.nih.gov/pubmed/30147817 http://dx.doi.org/10.1063/1.5044449 |
_version_ | 1783346558050238464 |
---|---|
author | Liu, Ya Li, Jiyu Hu, Dinglong Lam, Josh H. M. Sun, Dong Pang, Stella W. Lam, Raymond H. W. |
author_facet | Liu, Ya Li, Jiyu Hu, Dinglong Lam, Josh H. M. Sun, Dong Pang, Stella W. Lam, Raymond H. W. |
author_sort | Liu, Ya |
collection | PubMed |
description | Functional microbeads have been widely applied in molecular identification and other biochemical applications in the past decade, owing to the compatibility with flow cytometry and the commercially available microbeads for a wide range of molecular identification. Nevertheless, there is still a technical hurdle caused by the significant sample volume required (∼50 μl), limited molecular detection limit (∼20 pg/ml), complicated liquid/microbead handling procedures, and the long reaction time (>2 h). In this work, we optimize the operation of an automated microbead-based microfluidic device for the reagent mixing and the dynamic cytokine detection. In particular, we adopt fluorescence microscopy for quantification of multiple microbeads in each microchamber instead of flow cytometry for a lower detection limit. The operation parameters are then configured for improved measurement performance. As demonstrated, we consider the cytokine secretion of human macrophage-differentiating lymphocytes stimulated by lipopolysaccharides. We examine requirements on the mixing duration, minimal sample volume, and the image analysis scheme for the smaller biosample volume (<5 μl), the lower cytokine detection limit (∼5 pg/ml), and shorter process time (∼30 min). Importantly, this microfluidic strategy can be further extended in the molecular profiling using other functional microbeads for a broad range of biomedical applications. |
format | Online Article Text |
id | pubmed-6086689 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | AIP Publishing LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-60866892018-08-24 Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification Liu, Ya Li, Jiyu Hu, Dinglong Lam, Josh H. M. Sun, Dong Pang, Stella W. Lam, Raymond H. W. Biomicrofluidics Regular Articles Functional microbeads have been widely applied in molecular identification and other biochemical applications in the past decade, owing to the compatibility with flow cytometry and the commercially available microbeads for a wide range of molecular identification. Nevertheless, there is still a technical hurdle caused by the significant sample volume required (∼50 μl), limited molecular detection limit (∼20 pg/ml), complicated liquid/microbead handling procedures, and the long reaction time (>2 h). In this work, we optimize the operation of an automated microbead-based microfluidic device for the reagent mixing and the dynamic cytokine detection. In particular, we adopt fluorescence microscopy for quantification of multiple microbeads in each microchamber instead of flow cytometry for a lower detection limit. The operation parameters are then configured for improved measurement performance. As demonstrated, we consider the cytokine secretion of human macrophage-differentiating lymphocytes stimulated by lipopolysaccharides. We examine requirements on the mixing duration, minimal sample volume, and the image analysis scheme for the smaller biosample volume (<5 μl), the lower cytokine detection limit (∼5 pg/ml), and shorter process time (∼30 min). Importantly, this microfluidic strategy can be further extended in the molecular profiling using other functional microbeads for a broad range of biomedical applications. AIP Publishing LLC 2018-08-10 /pmc/articles/PMC6086689/ /pubmed/30147817 http://dx.doi.org/10.1063/1.5044449 Text en © 2018 Author(s). 1932-1058/2018/12(4)/044112/12 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Regular Articles Liu, Ya Li, Jiyu Hu, Dinglong Lam, Josh H. M. Sun, Dong Pang, Stella W. Lam, Raymond H. W. Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification |
title | Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification |
title_full | Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification |
title_fullStr | Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification |
title_full_unstemmed | Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification |
title_short | Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification |
title_sort | microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification |
topic | Regular Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086689/ https://www.ncbi.nlm.nih.gov/pubmed/30147817 http://dx.doi.org/10.1063/1.5044449 |
work_keys_str_mv | AT liuya microfluidicimplementationoffunctionalcytometricmicrobeadsforimprovedmultiplexedcytokinequantification AT lijiyu microfluidicimplementationoffunctionalcytometricmicrobeadsforimprovedmultiplexedcytokinequantification AT hudinglong microfluidicimplementationoffunctionalcytometricmicrobeadsforimprovedmultiplexedcytokinequantification AT lamjoshhm microfluidicimplementationoffunctionalcytometricmicrobeadsforimprovedmultiplexedcytokinequantification AT sundong microfluidicimplementationoffunctionalcytometricmicrobeadsforimprovedmultiplexedcytokinequantification AT pangstellaw microfluidicimplementationoffunctionalcytometricmicrobeadsforimprovedmultiplexedcytokinequantification AT lamraymondhw microfluidicimplementationoffunctionalcytometricmicrobeadsforimprovedmultiplexedcytokinequantification |