Cargando…
Evolutionary tinkering vs. rational engineering in the times of synthetic biology
Synthetic biology is not only a contemporary reformulation of the recombinant DNA technologies of the last 30 years, combined with descriptive language imported from electrical and industrial engineering. It is also a new way to interpret living systems and a statement of intent for the use and repr...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6087506/ https://www.ncbi.nlm.nih.gov/pubmed/30099657 http://dx.doi.org/10.1186/s40504-018-0086-x |
_version_ | 1783346691703832576 |
---|---|
author | de Lorenzo, Víctor |
author_facet | de Lorenzo, Víctor |
author_sort | de Lorenzo, Víctor |
collection | PubMed |
description | Synthetic biology is not only a contemporary reformulation of the recombinant DNA technologies of the last 30 years, combined with descriptive language imported from electrical and industrial engineering. It is also a new way to interpret living systems and a statement of intent for the use and reprogramming of biological objects for human benefit. In this context, the notion of designer biology is often presented as opposed to natural selection following the powerful rationale formulated by François Jacob on evolution-as-tinkering. The onset of synthetic biology opens a different perspective by leaving aside the question about the evolutionary origin of biological phenomena and focusing instead on the relational logic and the material properties of the corresponding components that make biological system work as they do. Once a functional challenge arises, the solution space for the problem is not homogeneous but it has attractors that can be accessed either through random exploration (as evolution does) or rational design (as engineers do). Although these two paths (i.e. evolution and engineering) are essentially different, they can lead to solutions to specific mechanistic bottlenecks that frequently coincide or converge—and one can easily help to understand and improve the other. Alas, productive discussions on these matters are often contaminated by ideological preconceptions that prevent adoption of the engineering metaphor to understand and ultimately reshape living systems—as ambitioned by synthetic biology. Yet, some possible ways to overcome the impasse are feasible. In parallel to Monod’s evolutionary paradox of teleo-logy (finality/purpose) vs. teleo-nomy (appearance of finality/purpose), a mechanistic paradox could be entertained between techno-logy (rational engineering) vs techno-nomy (appearance of rational engineering), all for the sake of understanding the relational logic that enables live systems to function as physico-chemical entities in time and space. This article thus proposes a radical vision of synthetic biology through the lens of the engineering metaphor. |
format | Online Article Text |
id | pubmed-6087506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-60875062018-08-24 Evolutionary tinkering vs. rational engineering in the times of synthetic biology de Lorenzo, Víctor Life Sci Soc Policy Research Synthetic biology is not only a contemporary reformulation of the recombinant DNA technologies of the last 30 years, combined with descriptive language imported from electrical and industrial engineering. It is also a new way to interpret living systems and a statement of intent for the use and reprogramming of biological objects for human benefit. In this context, the notion of designer biology is often presented as opposed to natural selection following the powerful rationale formulated by François Jacob on evolution-as-tinkering. The onset of synthetic biology opens a different perspective by leaving aside the question about the evolutionary origin of biological phenomena and focusing instead on the relational logic and the material properties of the corresponding components that make biological system work as they do. Once a functional challenge arises, the solution space for the problem is not homogeneous but it has attractors that can be accessed either through random exploration (as evolution does) or rational design (as engineers do). Although these two paths (i.e. evolution and engineering) are essentially different, they can lead to solutions to specific mechanistic bottlenecks that frequently coincide or converge—and one can easily help to understand and improve the other. Alas, productive discussions on these matters are often contaminated by ideological preconceptions that prevent adoption of the engineering metaphor to understand and ultimately reshape living systems—as ambitioned by synthetic biology. Yet, some possible ways to overcome the impasse are feasible. In parallel to Monod’s evolutionary paradox of teleo-logy (finality/purpose) vs. teleo-nomy (appearance of finality/purpose), a mechanistic paradox could be entertained between techno-logy (rational engineering) vs techno-nomy (appearance of rational engineering), all for the sake of understanding the relational logic that enables live systems to function as physico-chemical entities in time and space. This article thus proposes a radical vision of synthetic biology through the lens of the engineering metaphor. Springer Berlin Heidelberg 2018-08-12 /pmc/articles/PMC6087506/ /pubmed/30099657 http://dx.doi.org/10.1186/s40504-018-0086-x Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research de Lorenzo, Víctor Evolutionary tinkering vs. rational engineering in the times of synthetic biology |
title | Evolutionary tinkering vs. rational engineering in the times of synthetic biology |
title_full | Evolutionary tinkering vs. rational engineering in the times of synthetic biology |
title_fullStr | Evolutionary tinkering vs. rational engineering in the times of synthetic biology |
title_full_unstemmed | Evolutionary tinkering vs. rational engineering in the times of synthetic biology |
title_short | Evolutionary tinkering vs. rational engineering in the times of synthetic biology |
title_sort | evolutionary tinkering vs. rational engineering in the times of synthetic biology |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6087506/ https://www.ncbi.nlm.nih.gov/pubmed/30099657 http://dx.doi.org/10.1186/s40504-018-0086-x |
work_keys_str_mv | AT delorenzovictor evolutionarytinkeringvsrationalengineeringinthetimesofsyntheticbiology |