Cargando…
Electroclinical characteristics of seizures arising from the precuneus based on stereoelectroencephalography (SEEG)
BACKGROUND: Seizures arising from the precuneus are rare, and few studies have aimed at characterizing the clinical presentation of such seizures within the anatomic context of the frontoparietal circuits. We aimed to characterize the electrophysiological properties and clinical features of seizures...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088396/ https://www.ncbi.nlm.nih.gov/pubmed/30103717 http://dx.doi.org/10.1186/s12883-018-1119-z |
Sumario: | BACKGROUND: Seizures arising from the precuneus are rare, and few studies have aimed at characterizing the clinical presentation of such seizures within the anatomic context of the frontoparietal circuits. We aimed to characterize the electrophysiological properties and clinical features of seizures arising from the precuneus based on data from stereoelectroencephalography (SEEG). METHODS: The present retrospective study included 10 patients with medically intractable epilepsy, all of whom were diagnosed with precuneal epilepsy via stereoelectroencephalography (SEEG) at Yuquan Hospital and Xuan Wu Hospital between 2014 and 2016. Clinical semiology, scalp electroencephalography (EEG) findings, magnetic resonance images (MRI), and positron emission tomography (PET) images were analyzed during phase I preoperative evaluations. Following electrode implantation, the semiological sequence, ictal SEEG evolution, and anatomy of the relevant brain structures were analyzed for each seizure. RESULTS: Seven of ten patients reported auras, including body image disturbance (2/7), vestibular responses (2/7), somatosensory auras (1/7), visual auras (1/7), and non-specific auras (1/7). Primary motor manifestations included bilateral asymmetric tonic seizures (BATS) (7/10) and hypermotor seizures (HMS) (3/10). In one patient, epileptiform discharge on interictal EEG occurred ipsilateral to the side of the epileptogenic zone (EZ). Discharge was non-lateralized in the remaining nine patients. In six patients, interictal EEG signals were primarily localized in the temporal–parietal–occipital area. In two patients, ictal onset occurred ipsilateral to the EZ, which was mainly located in the temporal–parietal–occipital area. Two patterns of seizure spread were observed. The first pattern was characterized by BATS activity with ictal spread to the supplementary motor area (SMA), paracentral lobule (PCL), precentral gyrus (PrCG), or postcentral gyrus (PoCG). The second pattern was characterized by HMS activity with ictal spread to middle cingulate cortex (MCC) and posterior cingulate cortex (PCC). CONCLUSION: Aura type (e.g., body image disturbance and vestibular response), BATS, and HMS are the main indicators of precuneal epilepsy. Scalp EEG is of little use when attempting to localize precuneal seizures. Our findings indicate that the clinical characteristics of precuneal epilepsy vary among patients, and that the final electro–clinical phenotype depends on the pattern of seizure spread. |
---|