Cargando…

Multi-step prediction for influenza outbreak by an adjusted long short-term memory

Influenza results in approximately 3–5 million annual cases of severe illness and 250 000–500 000 deaths. We urgently need an accurate multi-step-ahead time-series forecasting model to help hospitals to perform dynamical assignments of beds to influenza patients for the annually varied influenza sea...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, J., Nawata, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088535/
https://www.ncbi.nlm.nih.gov/pubmed/29606177
http://dx.doi.org/10.1017/S0950268818000705
Descripción
Sumario:Influenza results in approximately 3–5 million annual cases of severe illness and 250 000–500 000 deaths. We urgently need an accurate multi-step-ahead time-series forecasting model to help hospitals to perform dynamical assignments of beds to influenza patients for the annually varied influenza season, and aid pharmaceutical companies to formulate a flexible plan of manufacturing vaccine for the yearly different influenza vaccine. In this study, we utilised four different multi-step prediction algorithms in the long short-term memory (LSTM). The result showed that implementing multiple single-output prediction in a six-layer LSTM structure achieved the best accuracy. The mean absolute percentage errors from two- to 13-step-ahead prediction for the US influenza-like illness rates were all <15%, averagely 12.930%. To the best of our knowledge, it is the first time that LSTM has been applied and refined to perform multi-step-ahead prediction for influenza outbreaks. Hopefully, this modelling methodology can be applied in other countries and therefore help prevent and control influenza worldwide.