Cargando…
Multi-step prediction for influenza outbreak by an adjusted long short-term memory
Influenza results in approximately 3–5 million annual cases of severe illness and 250 000–500 000 deaths. We urgently need an accurate multi-step-ahead time-series forecasting model to help hospitals to perform dynamical assignments of beds to influenza patients for the annually varied influenza sea...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088535/ https://www.ncbi.nlm.nih.gov/pubmed/29606177 http://dx.doi.org/10.1017/S0950268818000705 |
Sumario: | Influenza results in approximately 3–5 million annual cases of severe illness and 250 000–500 000 deaths. We urgently need an accurate multi-step-ahead time-series forecasting model to help hospitals to perform dynamical assignments of beds to influenza patients for the annually varied influenza season, and aid pharmaceutical companies to formulate a flexible plan of manufacturing vaccine for the yearly different influenza vaccine. In this study, we utilised four different multi-step prediction algorithms in the long short-term memory (LSTM). The result showed that implementing multiple single-output prediction in a six-layer LSTM structure achieved the best accuracy. The mean absolute percentage errors from two- to 13-step-ahead prediction for the US influenza-like illness rates were all <15%, averagely 12.930%. To the best of our knowledge, it is the first time that LSTM has been applied and refined to perform multi-step-ahead prediction for influenza outbreaks. Hopefully, this modelling methodology can be applied in other countries and therefore help prevent and control influenza worldwide. |
---|