Cargando…
Multi-step prediction for influenza outbreak by an adjusted long short-term memory
Influenza results in approximately 3–5 million annual cases of severe illness and 250 000–500 000 deaths. We urgently need an accurate multi-step-ahead time-series forecasting model to help hospitals to perform dynamical assignments of beds to influenza patients for the annually varied influenza sea...
Autores principales: | Zhang, J., Nawata, K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088535/ https://www.ncbi.nlm.nih.gov/pubmed/29606177 http://dx.doi.org/10.1017/S0950268818000705 |
Ejemplares similares
-
Long Short-term Memory–Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation
por: Athanasiou, Maria, et al.
Publicado: (2023) -
Visual short-term memory capacity predicts the “bandwidth” of visual long-term memory encoding
por: Fukuda, Keisuke, et al.
Publicado: (2019) -
Forecasting of medical equipment demand and outbreak spreading based on deep long short-term memory network: the COVID-19 pandemic in Turkey
por: Koç, Erdinç, et al.
Publicado: (2021) -
Convolutional Long-Short Term Memory Network with Multi-Head Attention Mechanism for Traffic Flow Prediction
por: Wei, Yupeng, et al.
Publicado: (2022) -
Short-Term Memory and Long-Term Memory are Still Different
por: Norris, Dennis
Publicado: (2017)