Cargando…
Water stabilization of Zr(6)-based metal–organic frameworks via solvent-assisted ligand incorporation
Water stability in metal–organic frameworks (MOFs) is critical for several practical applications. While water instability is mainly thought to stem from linker hydrolysis, MOFs with strong, hydrolysis-resistant metal-linker bonds can be susceptible to damage by capillary forces, which cause cavitie...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088556/ https://www.ncbi.nlm.nih.gov/pubmed/30155009 http://dx.doi.org/10.1039/c5sc01784j |
Sumario: | Water stability in metal–organic frameworks (MOFs) is critical for several practical applications. While water instability is mainly thought to stem from linker hydrolysis, MOFs with strong, hydrolysis-resistant metal-linker bonds can be susceptible to damage by capillary forces, which cause cavities and channels to collapse during activation from water. This study utilizes metal node functionalization as a strategy to create vapor-stable and recyclable MOFs. |
---|