Cargando…
Identification of differential expressed lncRNAs in human thyroid cancer by a genome‐wide analyses
Recently, a growing number of evidence has revealed that long noncoding RNAs (lncRNAs) act as key regulators in various cellular biologic processes, and dysregulation of lncRNAs involves in tumorigenesis and cancer progression. However, the expression pattern, clinical relevance, and biologic functi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089163/ https://www.ncbi.nlm.nih.gov/pubmed/29923329 http://dx.doi.org/10.1002/cam4.1627 |
Sumario: | Recently, a growing number of evidence has revealed that long noncoding RNAs (lncRNAs) act as key regulators in various cellular biologic processes, and dysregulation of lncRNAs involves in tumorigenesis and cancer progression. However, the expression pattern, clinical relevance, and biologic function of most lncRNAs in human thyroid cancer remain unclear. To identify more thyroid‐cancer‐associated lncRNAs, we analyzed the expression profile of lncRNAs in thyroid cancer tissues and adjacent normal or non‐tumor tissues using RNA sequencing data and gene microarray data from The Cancer Genome Atlas and Gene Expression Omnibus. Annotation and analyses of these data revealed that hundreds of lncRNAs are differentially expressed in thyroid cancer tissues when compared with normal tissues. By copy number variation analyses, we identified that some of those dysregulated lncRNAs genome locus are accompanied with the copy number amplification or deletion. Moreover, some lncRNAs expression levels are significantly associated with thyroid cancer patients overall or recurrence‐free survival time, such as RUNDC3A‐AS1, FOXD2‐AS1, PAX8‐AS1, and CRYM‐AS1. Furthermore, we validated an lncRNA termed LINC00704 in thyroid cancer cells by performing loss of function assays. Downregulation of LINC00704 could significantly impair thyroid cancer cells proliferation, colony formation, inhibit cell‐cycle progression and cell invasion, and induce cell apoptosis. Taken together, our findings reveal that lots of lncRNAs are dysregulated and may play critical roles in thyroid cancer, and this study could provide useful resource for identification and investigation of novel lncRNA candidates for thyroid cancer. |
---|