Cargando…
Automated Gleason grading of prostate cancer tissue microarrays via deep learning
The Gleason grading system remains the most powerful prognostic predictor for patients with prostate cancer since the 1960s. Its application requires highly-trained pathologists, is tedious and yet suffers from limited inter-pathologist reproducibility, especially for the intermediate Gleason score...
Autores principales: | Arvaniti, Eirini, Fricker, Kim S., Moret, Michael, Rupp, Niels, Hermanns, Thomas, Fankhauser, Christian, Wey, Norbert, Wild, Peter J., Rüschoff, Jan H., Claassen, Manfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089889/ https://www.ncbi.nlm.nih.gov/pubmed/30104757 http://dx.doi.org/10.1038/s41598-018-30535-1 |
Ejemplares similares
-
Author Correction: Automated Gleason grading of prostate cancer tissue microarrays via deep learning
por: Arvaniti, Eirini, et al.
Publicado: (2019) -
Author Correction: Automated Gleason grading of prostate cancer tissue microarrays via deep learning
por: Arvaniti, Eirini, et al.
Publicado: (2021) -
A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients
por: Zhong, Qing, et al.
Publicado: (2017) -
Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks
por: Şerbănescu, Mircea-Sebastian, et al.
Publicado: (2020) -
Sensitive detection of rare disease-associated cell subsets via representation learning
por: Arvaniti, Eirini, et al.
Publicado: (2017)