Cargando…
Comparative analysis of surface coating properties of five hydrophobins from Aspergillus nidulans and Trichoderma reseei
Fungal hydrophobins are small amphiphilic proteins that self-assemble into monolayers on hydrophobic:hydrophilic interfaces and can be used for surface coatings. Because e.g. Aspergillus nidulans contains six different hydrophobins, it is likely that they have different properties and are used for d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089913/ https://www.ncbi.nlm.nih.gov/pubmed/30104653 http://dx.doi.org/10.1038/s41598-018-29749-0 |
Sumario: | Fungal hydrophobins are small amphiphilic proteins that self-assemble into monolayers on hydrophobic:hydrophilic interfaces and can be used for surface coatings. Because e.g. Aspergillus nidulans contains six different hydrophobins, it is likely that they have different properties and are used for different “applications” in the fungus. We established a method for recombinant production of different class hydrophobins in Escherichia coli. We produced DewA, DewC, DewD, DewE from A. nidulans and HFBI from Trichoderma reesei and compared surface coating properties of these hydrophobins. All tested proteins formed coatings on glass, strongly increasing the hydrophobicity of the surface, and showed emulsion-stabilizing properties. But whereas the typical class I hydrophobin DewA formed the most stable coating on glass, the intermediate class hydrophobins DewE and DewD were more effective in stabilization of oil:water emulsions. This work gives insights into correlations between structural characteristics of hydrophobins and their behaviour as surface binding agents. It could help with the clarification of their biological functions and lead to novel biotechnological applications. |
---|