Cargando…

Electromagnetic wave absorption and structural properties of wide-band absorber made of graphene-printed glass-fibre composite

Lightweight composites combining electromagnetic wave absorption and excellent mechanical properties are required in spacecraft and aircraft. A one- dimensional metamaterial absorber consisting of a stack of glass fibre/epoxy layers and graphene nanoplatelets/epoxy films was proposed and fabricated...

Descripción completa

Detalles Bibliográficos
Autores principales: Marra, F., Lecini, J., Tamburrano, A., Pisu, L., Sarto, M. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089982/
https://www.ncbi.nlm.nih.gov/pubmed/30104662
http://dx.doi.org/10.1038/s41598-018-30498-3
Descripción
Sumario:Lightweight composites combining electromagnetic wave absorption and excellent mechanical properties are required in spacecraft and aircraft. A one- dimensional metamaterial absorber consisting of a stack of glass fibre/epoxy layers and graphene nanoplatelets/epoxy films was proposed and fabricated through a facile air-spraying based printing technology and a liquid resin infusion method. The production process allows an optimum dispersion of graphene nanoplatelets, promoting adhesion and mechanical integration of the glass fibre/epoxy layers with the graphene nanoplatelets/epoxy films. According to experimental results, the proposed wide-band absorber provides a reflection coefficient lower than −10 dB in the range 8.5–16.7 GHz and an improvement of flexural modulus of more than 15%, with a total thickness of ∼1 mm. Outstanding electromagnetic wave absorption and mechanical performance make the proposed absorber more competitive in aeronautical and aerospace applications.