Cargando…
MARVEL, a Tool for Prediction of Bacteriophage Sequences in Metagenomic Bins
Here we present MARVEL, a tool for prediction of double-stranded DNA bacteriophage sequences in metagenomic bins. MARVEL uses a random forest machine learning approach. We trained the program on a dataset with 1,247 phage and 1,029 bacterial genomes, and tested it on a dataset with 335 bacterial and...
Autores principales: | Amgarten, Deyvid, Braga, Lucas P. P., da Silva, Aline M., Setubal, João C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6090037/ https://www.ncbi.nlm.nih.gov/pubmed/30131825 http://dx.doi.org/10.3389/fgene.2018.00304 |
Ejemplares similares
-
Reads Binning Improves Alignment-Free Metagenome Comparison
por: Song, Kai, et al.
Publicado: (2019) -
PacBio Long Reads Improve Metagenomic Assemblies, Gene Catalogs, and Genome Binning
por: Xie, Haiying, et al.
Publicado: (2020) -
A Deep Clustering-based Novel Approach for Binning of Metagenomics Data
por: Madival, Sharanbasappa D., et al.
Publicado: (2022) -
MetaConClust - Unsupervised Binning of Metagenomics Data using Consensus Clustering
por: Sinha, Dipro, et al.
Publicado: (2022) -
Protocol for refining metagenomic binning with BinSPreader
por: Ochkalova, Sofia, et al.
Publicado: (2023)