Cargando…
Lipoprotein(a) accelerated the progression of atherosclerosis in patients with end-stage renal disease
BACKGROUND: Increased plasma level of lipoprotein(a) (Lpa) is a risk factor of cardiovascular diseases. This study aimed to explore the role of Lpa in the progression of atherosclerosis in patients with end-stage renal disease (ESRD) and to investigate whether its potential mechanism is mediated by...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6090984/ https://www.ncbi.nlm.nih.gov/pubmed/30071823 http://dx.doi.org/10.1186/s12882-018-0986-2 |
Sumario: | BACKGROUND: Increased plasma level of lipoprotein(a) (Lpa) is a risk factor of cardiovascular diseases. This study aimed to explore the role of Lpa in the progression of atherosclerosis in patients with end-stage renal disease (ESRD) and to investigate whether its potential mechanism is mediated by CXC chemokine ligand 16 (CXCL16) and low-density lipoprotein receptor (LDLr). METHODS: This is a retrospective clinical study. From January 2015 to April 2016, forty-six ESRD patients from Danyang First People’s Hospital were investigated. The patients were grouped according to their plasma Lpa levels: control group (Lpa < 300 mg/l, n = 23) and high Lpa group (Lpa ≥ 300 mg/l, n = 23). ESRD Patients with acute infective diseases, cancer, and/or chronic active hepatitis were excluded. Biochemical indexes and lipid profiles of the patients were measured. Surgically removed tissues from the radial arteries of ESRD patients receiving arteriovenostomy were used for the preliminary evaluation of atherosclerosis. Haematoxylin-eosin (HE) and filipin staining were used to observe foam cell formation. Protein expression levels of Lpa, CXCL16, and LDLr were detected by immunohistochemistry staining and immunofluorescent staining. RESULTS: There was more foam cell formation and cholesterol accumulation in the radial arteries of the high Lpa group than in those of the control group. Furthermore, the expression levels of Lpa, CXCL16, and LDLr were significantly increased in the radial arteries of the high Lpa group. Correlation analyses showed that the protein expression levels of Lpa (r = 0.72, P < 0.01), LDLr (r = 0.54, P < 0.01), and CXCL16 (r = 0.6, P < 0.01) in the radial arteries of ESRD patients were positively correlated with the plasma Lpa levels. Further analyses showed that the co-expression of Lpa with LDLr or CXCL16 was increased in the high Lpa group. CONCLUSIONS: High plasma Lpa levels accelerated the progression of atherosclerosis in ESRD through inducing Lpa accumulation in the arteries, which was associated with LDLr and CXCL16. These two lipoproteins could both be major lipoprotein components that regulate the entry of Lpa into arterial cells. |
---|