Cargando…
The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism
BACKGROUND: As the gut microbiota contributes to metabolic health, it is important to determine specific diet-microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of diet-induced obesity, but the interplay with intestinal microorganisms is un...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091023/ https://www.ncbi.nlm.nih.gov/pubmed/30071904 http://dx.doi.org/10.1186/s40168-018-0510-8 |
_version_ | 1783347314090311680 |
---|---|
author | Just, Sarah Mondot, Stanislas Ecker, Josef Wegner, Katrin Rath, Eva Gau, Laura Streidl, Theresa Hery-Arnaud, Genevieve Schmidt, Sinah Lesker, Till Robin Bieth, Valentin Dunkel, Andreas Strowig, Till Hofmann, Thomas Haller, Dirk Liebisch, Gerhard Gérard, Philippe Rohn, Sascha Lepage, Patricia Clavel, Thomas |
author_facet | Just, Sarah Mondot, Stanislas Ecker, Josef Wegner, Katrin Rath, Eva Gau, Laura Streidl, Theresa Hery-Arnaud, Genevieve Schmidt, Sinah Lesker, Till Robin Bieth, Valentin Dunkel, Andreas Strowig, Till Hofmann, Thomas Haller, Dirk Liebisch, Gerhard Gérard, Philippe Rohn, Sascha Lepage, Patricia Clavel, Thomas |
author_sort | Just, Sarah |
collection | PubMed |
description | BACKGROUND: As the gut microbiota contributes to metabolic health, it is important to determine specific diet-microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of diet-induced obesity, but the interplay with intestinal microorganisms is unclear. Here, we investigated metabolic consequences of diets enriched in primary bile acids with or without addition of lard or palm oil, and studied gut microbiota structure and functions in mice. RESULTS: In combination with bile acids, dietary lard fed to male C57BL/6N mice for a period of 8 weeks enhanced fat mass accumulation in colonized, but not in germ-free mice when compared to palm oil. This was associated with impaired glucose tolerance, lower fasting insulin levels, lower counts of enteroendocrine cells, fatty liver, and elevated amounts of hepatic triglycerides, cholesteryl esters, and monounsaturated fatty acids. Lard- and bile acid-fed mice were characterized by shifts in dominant gut bacterial communities, including decreased relative abundances of Lachnospiraceae and increased occurrence of Desulfovibrionaceae and the species Clostridium lactatifermentans and Flintibacter butyricus. Metatranscriptomic analysis revealed shifts in microbial functions, including lipid and amino acid metabolism. CONCLUSIONS: Caution is required when interpreting data from diet-induced obesity models due to varying effects of dietary fat source. Detrimental metabolic consequences of a diet enriched with lard and primary bile acids were dependent on microbial colonization of the host and were linked to hepatic lipid rearrangements and to alterations of dominant bacterial communities in the cecum. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0510-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6091023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-60910232018-08-17 The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism Just, Sarah Mondot, Stanislas Ecker, Josef Wegner, Katrin Rath, Eva Gau, Laura Streidl, Theresa Hery-Arnaud, Genevieve Schmidt, Sinah Lesker, Till Robin Bieth, Valentin Dunkel, Andreas Strowig, Till Hofmann, Thomas Haller, Dirk Liebisch, Gerhard Gérard, Philippe Rohn, Sascha Lepage, Patricia Clavel, Thomas Microbiome Research BACKGROUND: As the gut microbiota contributes to metabolic health, it is important to determine specific diet-microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of diet-induced obesity, but the interplay with intestinal microorganisms is unclear. Here, we investigated metabolic consequences of diets enriched in primary bile acids with or without addition of lard or palm oil, and studied gut microbiota structure and functions in mice. RESULTS: In combination with bile acids, dietary lard fed to male C57BL/6N mice for a period of 8 weeks enhanced fat mass accumulation in colonized, but not in germ-free mice when compared to palm oil. This was associated with impaired glucose tolerance, lower fasting insulin levels, lower counts of enteroendocrine cells, fatty liver, and elevated amounts of hepatic triglycerides, cholesteryl esters, and monounsaturated fatty acids. Lard- and bile acid-fed mice were characterized by shifts in dominant gut bacterial communities, including decreased relative abundances of Lachnospiraceae and increased occurrence of Desulfovibrionaceae and the species Clostridium lactatifermentans and Flintibacter butyricus. Metatranscriptomic analysis revealed shifts in microbial functions, including lipid and amino acid metabolism. CONCLUSIONS: Caution is required when interpreting data from diet-induced obesity models due to varying effects of dietary fat source. Detrimental metabolic consequences of a diet enriched with lard and primary bile acids were dependent on microbial colonization of the host and were linked to hepatic lipid rearrangements and to alterations of dominant bacterial communities in the cecum. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0510-8) contains supplementary material, which is available to authorized users. BioMed Central 2018-08-02 /pmc/articles/PMC6091023/ /pubmed/30071904 http://dx.doi.org/10.1186/s40168-018-0510-8 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Just, Sarah Mondot, Stanislas Ecker, Josef Wegner, Katrin Rath, Eva Gau, Laura Streidl, Theresa Hery-Arnaud, Genevieve Schmidt, Sinah Lesker, Till Robin Bieth, Valentin Dunkel, Andreas Strowig, Till Hofmann, Thomas Haller, Dirk Liebisch, Gerhard Gérard, Philippe Rohn, Sascha Lepage, Patricia Clavel, Thomas The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism |
title | The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism |
title_full | The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism |
title_fullStr | The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism |
title_full_unstemmed | The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism |
title_short | The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism |
title_sort | gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091023/ https://www.ncbi.nlm.nih.gov/pubmed/30071904 http://dx.doi.org/10.1186/s40168-018-0510-8 |
work_keys_str_mv | AT justsarah thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT mondotstanislas thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT eckerjosef thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT wegnerkatrin thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT ratheva thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT gaulaura thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT streidltheresa thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT heryarnaudgenevieve thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT schmidtsinah thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT leskertillrobin thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT biethvalentin thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT dunkelandreas thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT strowigtill thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT hofmannthomas thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT hallerdirk thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT liebischgerhard thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT gerardphilippe thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT rohnsascha thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT lepagepatricia thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT clavelthomas thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT justsarah gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT mondotstanislas gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT eckerjosef gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT wegnerkatrin gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT ratheva gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT gaulaura gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT streidltheresa gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT heryarnaudgenevieve gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT schmidtsinah gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT leskertillrobin gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT biethvalentin gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT dunkelandreas gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT strowigtill gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT hofmannthomas gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT hallerdirk gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT liebischgerhard gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT gerardphilippe gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT rohnsascha gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT lepagepatricia gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism AT clavelthomas gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism |