Cargando…

The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism

BACKGROUND: As the gut microbiota contributes to metabolic health, it is important to determine specific diet-microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of diet-induced obesity, but the interplay with intestinal microorganisms is un...

Descripción completa

Detalles Bibliográficos
Autores principales: Just, Sarah, Mondot, Stanislas, Ecker, Josef, Wegner, Katrin, Rath, Eva, Gau, Laura, Streidl, Theresa, Hery-Arnaud, Genevieve, Schmidt, Sinah, Lesker, Till Robin, Bieth, Valentin, Dunkel, Andreas, Strowig, Till, Hofmann, Thomas, Haller, Dirk, Liebisch, Gerhard, Gérard, Philippe, Rohn, Sascha, Lepage, Patricia, Clavel, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091023/
https://www.ncbi.nlm.nih.gov/pubmed/30071904
http://dx.doi.org/10.1186/s40168-018-0510-8
_version_ 1783347314090311680
author Just, Sarah
Mondot, Stanislas
Ecker, Josef
Wegner, Katrin
Rath, Eva
Gau, Laura
Streidl, Theresa
Hery-Arnaud, Genevieve
Schmidt, Sinah
Lesker, Till Robin
Bieth, Valentin
Dunkel, Andreas
Strowig, Till
Hofmann, Thomas
Haller, Dirk
Liebisch, Gerhard
Gérard, Philippe
Rohn, Sascha
Lepage, Patricia
Clavel, Thomas
author_facet Just, Sarah
Mondot, Stanislas
Ecker, Josef
Wegner, Katrin
Rath, Eva
Gau, Laura
Streidl, Theresa
Hery-Arnaud, Genevieve
Schmidt, Sinah
Lesker, Till Robin
Bieth, Valentin
Dunkel, Andreas
Strowig, Till
Hofmann, Thomas
Haller, Dirk
Liebisch, Gerhard
Gérard, Philippe
Rohn, Sascha
Lepage, Patricia
Clavel, Thomas
author_sort Just, Sarah
collection PubMed
description BACKGROUND: As the gut microbiota contributes to metabolic health, it is important to determine specific diet-microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of diet-induced obesity, but the interplay with intestinal microorganisms is unclear. Here, we investigated metabolic consequences of diets enriched in primary bile acids with or without addition of lard or palm oil, and studied gut microbiota structure and functions in mice. RESULTS: In combination with bile acids, dietary lard fed to male C57BL/6N mice for a period of 8 weeks enhanced fat mass accumulation in colonized, but not in germ-free mice when compared to palm oil. This was associated with impaired glucose tolerance, lower fasting insulin levels, lower counts of enteroendocrine cells, fatty liver, and elevated amounts of hepatic triglycerides, cholesteryl esters, and monounsaturated fatty acids. Lard- and bile acid-fed mice were characterized by shifts in dominant gut bacterial communities, including decreased relative abundances of Lachnospiraceae and increased occurrence of Desulfovibrionaceae and the species Clostridium lactatifermentans and Flintibacter butyricus. Metatranscriptomic analysis revealed shifts in microbial functions, including lipid and amino acid metabolism. CONCLUSIONS: Caution is required when interpreting data from diet-induced obesity models due to varying effects of dietary fat source. Detrimental metabolic consequences of a diet enriched with lard and primary bile acids were dependent on microbial colonization of the host and were linked to hepatic lipid rearrangements and to alterations of dominant bacterial communities in the cecum. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0510-8) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6091023
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-60910232018-08-17 The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism Just, Sarah Mondot, Stanislas Ecker, Josef Wegner, Katrin Rath, Eva Gau, Laura Streidl, Theresa Hery-Arnaud, Genevieve Schmidt, Sinah Lesker, Till Robin Bieth, Valentin Dunkel, Andreas Strowig, Till Hofmann, Thomas Haller, Dirk Liebisch, Gerhard Gérard, Philippe Rohn, Sascha Lepage, Patricia Clavel, Thomas Microbiome Research BACKGROUND: As the gut microbiota contributes to metabolic health, it is important to determine specific diet-microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of diet-induced obesity, but the interplay with intestinal microorganisms is unclear. Here, we investigated metabolic consequences of diets enriched in primary bile acids with or without addition of lard or palm oil, and studied gut microbiota structure and functions in mice. RESULTS: In combination with bile acids, dietary lard fed to male C57BL/6N mice for a period of 8 weeks enhanced fat mass accumulation in colonized, but not in germ-free mice when compared to palm oil. This was associated with impaired glucose tolerance, lower fasting insulin levels, lower counts of enteroendocrine cells, fatty liver, and elevated amounts of hepatic triglycerides, cholesteryl esters, and monounsaturated fatty acids. Lard- and bile acid-fed mice were characterized by shifts in dominant gut bacterial communities, including decreased relative abundances of Lachnospiraceae and increased occurrence of Desulfovibrionaceae and the species Clostridium lactatifermentans and Flintibacter butyricus. Metatranscriptomic analysis revealed shifts in microbial functions, including lipid and amino acid metabolism. CONCLUSIONS: Caution is required when interpreting data from diet-induced obesity models due to varying effects of dietary fat source. Detrimental metabolic consequences of a diet enriched with lard and primary bile acids were dependent on microbial colonization of the host and were linked to hepatic lipid rearrangements and to alterations of dominant bacterial communities in the cecum. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0510-8) contains supplementary material, which is available to authorized users. BioMed Central 2018-08-02 /pmc/articles/PMC6091023/ /pubmed/30071904 http://dx.doi.org/10.1186/s40168-018-0510-8 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Just, Sarah
Mondot, Stanislas
Ecker, Josef
Wegner, Katrin
Rath, Eva
Gau, Laura
Streidl, Theresa
Hery-Arnaud, Genevieve
Schmidt, Sinah
Lesker, Till Robin
Bieth, Valentin
Dunkel, Andreas
Strowig, Till
Hofmann, Thomas
Haller, Dirk
Liebisch, Gerhard
Gérard, Philippe
Rohn, Sascha
Lepage, Patricia
Clavel, Thomas
The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism
title The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism
title_full The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism
title_fullStr The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism
title_full_unstemmed The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism
title_short The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism
title_sort gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091023/
https://www.ncbi.nlm.nih.gov/pubmed/30071904
http://dx.doi.org/10.1186/s40168-018-0510-8
work_keys_str_mv AT justsarah thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT mondotstanislas thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT eckerjosef thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT wegnerkatrin thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT ratheva thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT gaulaura thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT streidltheresa thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT heryarnaudgenevieve thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT schmidtsinah thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT leskertillrobin thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT biethvalentin thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT dunkelandreas thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT strowigtill thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT hofmannthomas thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT hallerdirk thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT liebischgerhard thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT gerardphilippe thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT rohnsascha thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT lepagepatricia thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT clavelthomas thegutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT justsarah gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT mondotstanislas gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT eckerjosef gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT wegnerkatrin gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT ratheva gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT gaulaura gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT streidltheresa gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT heryarnaudgenevieve gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT schmidtsinah gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT leskertillrobin gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT biethvalentin gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT dunkelandreas gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT strowigtill gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT hofmannthomas gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT hallerdirk gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT liebischgerhard gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT gerardphilippe gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT rohnsascha gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT lepagepatricia gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism
AT clavelthomas gutmicrobiotadrivestheimpactofbileacidsandfatsourceindietonmousemetabolism