Cargando…

Metalloprotease Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation

BACKGROUND: Mice with pilocarpine-induced temporal lobe epilepsy (TLE) are characterized by intense hippocampal neuroinflammation, a prominent pathological hallmark of TLE that is known to contribute to neuronal hyperexcitability. Recent studies indicate that Adam10, a member of a disintegrin and me...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Xinjian, Li, Xiaolin, Zhu, Mengyi, Xu, Kangni, Yang, Li, Han, Bing, Huang, Rongrong, Zhang, Aifeng, Yao, Honghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091106/
https://www.ncbi.nlm.nih.gov/pubmed/30075790
http://dx.doi.org/10.1186/s12974-018-1260-z
Descripción
Sumario:BACKGROUND: Mice with pilocarpine-induced temporal lobe epilepsy (TLE) are characterized by intense hippocampal neuroinflammation, a prominent pathological hallmark of TLE that is known to contribute to neuronal hyperexcitability. Recent studies indicate that Adam10, a member of a disintegrin and metalloproteinase domain-containing protein (Adam) family, has been involved in the neuroinflammation response. However, it remains unclear whether and how Adam10 modulates neuroinflammation responses in the context of an epileptic brain or whether Adam10 affects epileptogenesis via the neuroinflammation pathway. METHODS: Adult male C57BL/6J mice were subjected to intraperitoneal injection of pilocarpine to induce TLE. Adeno-associated viral (AAV) vectors carrying Adam10 (AAV-Adam10) or lentiviral vectors carrying short hairpin RNA, which is specific to the mouse Adam10 mRNA (shRNA-Adam10), were bilaterally injected into the hippocampus to induce overexpression or knockdown of Adam10, respectively. The specific anti-inflammatory agent minocycline was administered following status epilepticus (SE) to block hippocampal neuroinflammation. Continuous video EEG recording was performed to analyze epileptic behavior. Western blot, immunofluorescence staining, and ELISA were performed to determine Adam10 expression as well as hippocampal neuroinflammation. RESULTS: In this study, we demonstrate that overexpression of Adam10 in the hippocampus suppresses neuroinflammation and reduces seizure activity in TLE mice, whereas knockdown of Adam10 exacerbates hippocampal neuroinflammation and increases seizure activity. Furthermore, increased seizure activity in Adam10 knockdown TLE mice is dependent on hippocampal neuroinflammation. CONCLUSION: These results suggest that Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation. Our findings provide new insights into the Adam10 regulation of development of epilepsy via the neuroinflammation pathway and identify a potential therapeutic target for epilepsy.