Cargando…
TRIQ: a new method to evaluate triclusters
BACKGROUND: Triclustering has shown to be a valuable tool for the analysis of microarray data since its appearance as an improvement of classical clustering and biclustering techniques. The standard for validation of triclustering is based on three different measures: correlation, graphic similarity...
Autores principales: | Gutiérrez-Avilés, David, Giráldez, Raúl, Gil-Cumbreras, Francisco Javier, Rubio-Escudero, Cristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091209/ https://www.ncbi.nlm.nih.gov/pubmed/30127855 http://dx.doi.org/10.1186/s13040-018-0177-5 |
Ejemplares similares
-
Mining 3D Patterns from Gene Expression Temporal Data: A New Tricluster Evaluation Measure
por: Gutiérrez-Avilés, David, et al.
Publicado: (2014) -
G-Tric: generating three-way synthetic datasets with triclustering solutions
por: Lobo, João, et al.
Publicado: (2021) -
Multiobjective triclustering of time-series transcriptome data reveals key genes of biological processes
por: Bhar, Anirban, et al.
Publicado: (2015) -
Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ)
por: Rosas-Román, Ignacio, et al.
Publicado: (2021) -
MSL: A Measure to Evaluate Three-dimensional Patterns in Gene Expression Data
por: Gutiérrez-Avilés, David, et al.
Publicado: (2015)