Cargando…
Multifunctional Magnetic and Upconverting Nanobeads as Dual Modal Imaging Tools
[Image: see text] We report the fabrication of aqueous multimodal imaging nanocomposites based on superparamagnetic nanoparticles (MNPs) and two different sizes of photoluminescent upconverting nanoparticles (UCNPs). The controlled and simultaneous incorporation of both types of nanoparticles (NPs)...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091499/ https://www.ncbi.nlm.nih.gov/pubmed/28945361 http://dx.doi.org/10.1021/acs.bioconjchem.7b00432 |
_version_ | 1783347394235072512 |
---|---|
author | Materia, Maria Elena Pernia Leal, Manuel Scotto, Marco Balakrishnan, Preethi Bala Kumar Avugadda, Sahitya García-Martín, María L. Cohen, Bruce E. Chan, Emory M. Pellegrino, Teresa |
author_facet | Materia, Maria Elena Pernia Leal, Manuel Scotto, Marco Balakrishnan, Preethi Bala Kumar Avugadda, Sahitya García-Martín, María L. Cohen, Bruce E. Chan, Emory M. Pellegrino, Teresa |
author_sort | Materia, Maria Elena |
collection | PubMed |
description | [Image: see text] We report the fabrication of aqueous multimodal imaging nanocomposites based on superparamagnetic nanoparticles (MNPs) and two different sizes of photoluminescent upconverting nanoparticles (UCNPs). The controlled and simultaneous incorporation of both types of nanoparticles (NPs) was obtained by controlling the solvent composition and the addition rate of the destabilizing solvent. The magnetic properties of the MNPs remained unaltered after their encapsulation into the polymeric beads as shown by the T2 relaxivity measurements. The UCNPs maintain photoluminescent properties even when embedded with the MNPs into the polymer bead. Moreover, the light emitted by the magnetic and upconverting nanobeads (MUCNBs) under NIR excitation (λ(exc) = 980 nm) was clearly observed through different thicknesses of agarose gel or through a mouse skin layer. The comparison with magnetic and luminescent nanobeads based on red-emitting quantum dots (QDs) demonstrated that while the QD-based beads show significant autofluorescence background from the skin, the signal obtained by the MUCNBs allows a decrease in this background. In summary, these results indicate that MUCNBs are good magnetic and optical probes for in vivo multimodal imaging sensors. |
format | Online Article Text |
id | pubmed-6091499 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-60914992018-09-25 Multifunctional Magnetic and Upconverting Nanobeads as Dual Modal Imaging Tools Materia, Maria Elena Pernia Leal, Manuel Scotto, Marco Balakrishnan, Preethi Bala Kumar Avugadda, Sahitya García-Martín, María L. Cohen, Bruce E. Chan, Emory M. Pellegrino, Teresa Bioconjug Chem [Image: see text] We report the fabrication of aqueous multimodal imaging nanocomposites based on superparamagnetic nanoparticles (MNPs) and two different sizes of photoluminescent upconverting nanoparticles (UCNPs). The controlled and simultaneous incorporation of both types of nanoparticles (NPs) was obtained by controlling the solvent composition and the addition rate of the destabilizing solvent. The magnetic properties of the MNPs remained unaltered after their encapsulation into the polymeric beads as shown by the T2 relaxivity measurements. The UCNPs maintain photoluminescent properties even when embedded with the MNPs into the polymer bead. Moreover, the light emitted by the magnetic and upconverting nanobeads (MUCNBs) under NIR excitation (λ(exc) = 980 nm) was clearly observed through different thicknesses of agarose gel or through a mouse skin layer. The comparison with magnetic and luminescent nanobeads based on red-emitting quantum dots (QDs) demonstrated that while the QD-based beads show significant autofluorescence background from the skin, the signal obtained by the MUCNBs allows a decrease in this background. In summary, these results indicate that MUCNBs are good magnetic and optical probes for in vivo multimodal imaging sensors. American Chemical Society 2017-09-25 2017-11-15 /pmc/articles/PMC6091499/ /pubmed/28945361 http://dx.doi.org/10.1021/acs.bioconjchem.7b00432 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Materia, Maria Elena Pernia Leal, Manuel Scotto, Marco Balakrishnan, Preethi Bala Kumar Avugadda, Sahitya García-Martín, María L. Cohen, Bruce E. Chan, Emory M. Pellegrino, Teresa Multifunctional Magnetic and Upconverting Nanobeads as Dual Modal Imaging Tools |
title | Multifunctional Magnetic and Upconverting Nanobeads
as Dual Modal Imaging Tools |
title_full | Multifunctional Magnetic and Upconverting Nanobeads
as Dual Modal Imaging Tools |
title_fullStr | Multifunctional Magnetic and Upconverting Nanobeads
as Dual Modal Imaging Tools |
title_full_unstemmed | Multifunctional Magnetic and Upconverting Nanobeads
as Dual Modal Imaging Tools |
title_short | Multifunctional Magnetic and Upconverting Nanobeads
as Dual Modal Imaging Tools |
title_sort | multifunctional magnetic and upconverting nanobeads
as dual modal imaging tools |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091499/ https://www.ncbi.nlm.nih.gov/pubmed/28945361 http://dx.doi.org/10.1021/acs.bioconjchem.7b00432 |
work_keys_str_mv | AT materiamariaelena multifunctionalmagneticandupconvertingnanobeadsasdualmodalimagingtools AT pernialealmanuel multifunctionalmagneticandupconvertingnanobeadsasdualmodalimagingtools AT scottomarco multifunctionalmagneticandupconvertingnanobeadsasdualmodalimagingtools AT balakrishnanpreethibala multifunctionalmagneticandupconvertingnanobeadsasdualmodalimagingtools AT kumaravugaddasahitya multifunctionalmagneticandupconvertingnanobeadsasdualmodalimagingtools AT garciamartinmarial multifunctionalmagneticandupconvertingnanobeadsasdualmodalimagingtools AT cohenbrucee multifunctionalmagneticandupconvertingnanobeadsasdualmodalimagingtools AT chanemorym multifunctionalmagneticandupconvertingnanobeadsasdualmodalimagingtools AT pellegrinoteresa multifunctionalmagneticandupconvertingnanobeadsasdualmodalimagingtools |