Cargando…

Laboratory evaluation of the effects of sterilizing doses of γ-rays from Caesium-137 source on the daily flight activity and flight performance of Aedes albopictus males

The control of Aedes albopictus through Sterile Male Releases requires that the most competitive males be mass-reared and sterilized usually with gamma- or X-ray radiation prior to release. Developing an understanding of the impact of irradiation treatment on flight performance in sterile males is v...

Descripción completa

Detalles Bibliográficos
Autores principales: Lebon, Cyrille, Soupapoule, Kevin, Wilkinson, David A., Le Goff, Gilbert, Damiens, David, Gouagna, Louis Clément
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091941/
https://www.ncbi.nlm.nih.gov/pubmed/30107004
http://dx.doi.org/10.1371/journal.pone.0202236
Descripción
Sumario:The control of Aedes albopictus through Sterile Male Releases requires that the most competitive males be mass-reared and sterilized usually with gamma- or X-ray radiation prior to release. Developing an understanding of the impact of irradiation treatment on flight performance in sterile males is very important because any fitness cost may reduce the efficacy of SIT intervention in the field. Here, we examined the role of irradiation exposure and sugar-feeding on daily flight activity and performance of Ae. albopictus males sterilized during pupal stage with gamma-radiation at 35Gray from a Caesium 137 source. We used a previously developed automated video tracking system to monitor the flight activity of different groups of sterile and control non-sterile males over 24 hours in a flight arena. This monitoring took place under controlled laboratory conditions and we wished to quantify the daily flight activity and to highlight any changes due to radiation treatment and nutritional conditions (starved versus sugar fed). Our experimental evidence demonstrated a characteristic diurnal flight activity with a bimodal pattern regardless of the treatment. Precisely, both irradiated and non-irradiated males exhibited two distinct peaks in flight activity in the morning (6–8 a.m.) and late afternoon (4–6 p.m.). Under changing physiological conditions, irradiated males were generally more active over time and flew longer overall distances than control male populations. These results suggest some internal circadian control of the phase relation to the light-dark cycle, with evidence for modification of flight performance by nutritional status. The fact that daily activity patterns are alike in irradiated and control Ae. albopictus males, and that sterile males could display higher flight performance, is in contrast with the hypothesis that irradiation treatment appears to reduce the fitness of male mosquitoes. We discuss the implications of the present study in sterile-male release programs against Ae. albopictus.