Cargando…
Suppression of overlearning in independent component analysis used for removal of muscular artifacts from electroencephalographic records
This paper addresses the overlearning problem in the independent component analysis (ICA) used for the removal of muscular artifacts from electroencephalographic (EEG) records. We note that for short EEG records with high number of channels the ICA fails to separate artifact-free EEG and muscular ar...
Autores principales: | Sebek, Jan, Bortel, Radoslav, Sovka, Pavel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091961/ https://www.ncbi.nlm.nih.gov/pubmed/30106969 http://dx.doi.org/10.1371/journal.pone.0201900 |
Ejemplares similares
-
Performance-based approach for movement artifact removal from electroencephalographic data recorded during locomotion
por: Arad, Evyatar, et al.
Publicado: (2018) -
Reorganization of the Neurobiology of Language After Sentence Overlearning
por: Skipper, Jeremy I, et al.
Publicado: (2021) -
Why overlearned sequences are special: distinct neural networks for ordinal sequences
por: Pariyadath, Vani, et al.
Publicado: (2012) -
Hybrid ICA—Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals
por: Mannan, Malik M. Naeem, et al.
Publicado: (2016) -
Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis
por: Issa, Mohamed F., et al.
Publicado: (2019)