Cargando…
Probabilistic analysis and resistance factor calibration for deep foundation design using Monte Carlo simulation
The method of incorporating the sources of parameter uncertainty is crucial when conducting probabilistic analysis for service limit state (SLS) design of a deep foundation. This paper describes the method of using Monte Carlo simulation for probabilistic analyses and for calibration of resistance f...
Autores principales: | Vu, Thuy, Loehr, Erik, Smith, Douglas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092556/ https://www.ncbi.nlm.nih.gov/pubmed/30112458 http://dx.doi.org/10.1016/j.heliyon.2018.e00727 |
Ejemplares similares
-
Stochastic simulation and Monte Carlo methods: mathematical foundations of stochastic simulation
por: Graham, Carl, et al.
Publicado: (2013) -
Monte Carlo to Monte Carlo scale factors for flavour tagging efficiency calibration
por: The ATLAS collaboration
Publicado: (2020) -
Monte Carlo simulation
por: Mitchell, Frederick J
Publicado: (2017) -
Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo
por: Dinh, Vu, et al.
Publicado: (2018) -
Correctness of Sequential Monte Carlo Inference for Probabilistic Programming Languages
por: Lundén, Daniel, et al.
Publicado: (2021)