Cargando…

Estimation of variance components and prediction of breeding values based on group records from varying group sizes

BACKGROUND: Records on groups of individuals rather than on single individuals could be valuable for predicting breeding values (BV) of the traits that are difficult or costly to measure individually, such as feed intake in pigs or beef cattle. Here, we present a model, which handles group records f...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Guosheng, Madsen, Per, Nielsen, Bjarne, Ostersen, Tage, Shirali, Mahmoud, Jensen, Just, Christensen, Ole F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092838/
https://www.ncbi.nlm.nih.gov/pubmed/30107792
http://dx.doi.org/10.1186/s12711-018-0413-y
Descripción
Sumario:BACKGROUND: Records on groups of individuals rather than on single individuals could be valuable for predicting breeding values (BV) of the traits that are difficult or costly to measure individually, such as feed intake in pigs or beef cattle. Here, we present a model, which handles group records from varying group sizes and involves multiple fixed and random effects, for estimating variance components and predicting BV. Moreover, using simulation, we investigated the efficiency of group records for predicting BV in situations with various group sizes and structures, and factors that affect the trait. RESULTS: The results show that the presented model for group records worked well and that variances estimated from group records with varying group sizes were consistent with those estimated from individual records, but with larger standard errors. Ignoring litter and pen effects had very little or no influence on the accuracy of estimated BV (EBV) obtained from group records. However, ignoring litter effects resulted in biased estimates of additive genetic variance and EBV. The presence of litter and pen effects on phenotypes decreased the accuracy of EBV although the prediction model fitted both effects. Having more littermates in the same pen led to a higher accuracy of EBV. The decay of EBV accuracy with increasing group size was more marked for scenarios with litter and pen effects than without. When litters of six individuals were divided into two pens, accuracies of EBV obtained from group records with a size up to 12 (average 9.6) and up to 24 (average 19.2) were 66.6 and 57.6% of those estimated from individual records in the scenario with litter and pen effects on phenotypes. These percentages reached 77.0 and 68.4% in the scenario without litter and pen effects on phenotypes. CONCLUSIONS: Our results indicate that the model works appropriately for the analysis of group records from varying group sizes. Using group records for genetic evaluation of traits such as feed intake in pig is feasible and the efficiency of the resulting estimates depends on the size and structure of the groups and on the magnitude of the variances for litter and pen effects.