Cargando…
A supplier selection model in pharmaceutical supply chain using PCA, Z-TOPSIS and MILP: A case study
Supplier selection is one of the critical processes in supplier chain management which is associated with the flow of goods and services from the supplier of raw material to the final consumer. The purpose of this paper is to present a novel approach and improves the supplier selection in a multi-it...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093669/ https://www.ncbi.nlm.nih.gov/pubmed/30110349 http://dx.doi.org/10.1371/journal.pone.0201604 |
Sumario: | Supplier selection is one of the critical processes in supplier chain management which is associated with the flow of goods and services from the supplier of raw material to the final consumer. The purpose of this paper is to present a novel approach and improves the supplier selection in a multi-item/multi-supplier environment, and provide the importance and the reliability of the criteria by handling vagueness and imperfection of information in decision making process. First, principal component analysis (PCA) method is used to reduce the number of supplier selection criteria in pharmaceutical companies. Next, using the most important criteria resulted from the PCA method, the importance and the reliability of the selected criteria are assessed by a group of decision-maker (DM). Then, the importance value of each supplier with respect to each product is obtained via the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) based on the concept of Z-numbers called Z-TOPSIS. Finally, these values are used as inputs in a mixed integer linear programming (MILP) to determine the suppliers and the amount of the products provided from the related suppliers. To validate the proposed methodology, an application is performed in a pharmaceutical company. The results show that the proposed method could provide promising results in decision making process more appropriately. |
---|