Cargando…
Machine learning for fast identification of bacteraemia in SIRS patients treated on standard care wards: a cohort study
Bacteraemia is a life-threating condition requiring immediate diagnostic and therapeutic actions. Blood culture (BC) analyses often result in a low true positive result rate, indicating its improper usage. A predictive model might assist clinicians in deciding for whom to conduct or to avoid BC anal...
Autores principales: | Ratzinger, Franz, Haslacher, Helmuth, Perkmann, Thomas, Pinzan, Matilde, Anner, Philip, Makristathis, Athanasios, Burgmann, Heinz, Heinze, Georg, Dorffner, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093921/ https://www.ncbi.nlm.nih.gov/pubmed/30111827 http://dx.doi.org/10.1038/s41598-018-30236-9 |
Ejemplares similares
-
Evaluation of the Septifast M(Grade) Test on Standard Care Wards—A Cohort Study
por: Ratzinger, Franz, et al.
Publicado: (2016) -
Prevalence and Outcome of Secondary Hemophagocytic Lymphohistiocytosis Among SIRS Patients: Results from a Prospective Cohort Study
por: Gualdoni, Guido A., et al.
Publicado: (2019) -
A Risk Prediction Model for Screening Bacteremic Patients: A Cross Sectional Study
por: Ratzinger, Franz, et al.
Publicado: (2014) -
Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia
por: Ratzinger, Franz, et al.
Publicado: (2015) -
25(OH)D and 1,25(OH)D vitamin D fails to predict sepsis and mortality in a prospective cohort study
por: Ratzinger, Franz, et al.
Publicado: (2017)