Cargando…
Tumor promoter TPA activates Wnt/β-catenin signaling in a casein kinase 1-dependent manner
The tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) has been defined by its ability to promote tumorigenesis on carcinogen-initiated mouse skin. Activation of Wnt/β-catenin signaling has a decisive role in mouse skin carcinogenesis, but it remains unclear how TPA activates Wnt/β-catenin s...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094128/ https://www.ncbi.nlm.nih.gov/pubmed/30038030 http://dx.doi.org/10.1073/pnas.1802422115 |
Sumario: | The tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) has been defined by its ability to promote tumorigenesis on carcinogen-initiated mouse skin. Activation of Wnt/β-catenin signaling has a decisive role in mouse skin carcinogenesis, but it remains unclear how TPA activates Wnt/β-catenin signaling in mouse skin carcinogenesis. Here, we found that TPA could enhance Wnt/β-catenin signaling in a casein kinase 1 (CK1) ε/δ-dependent manner. TPA stabilized CK1ε and enhanced its kinase activity. TPA further induced the phosphorylation of LRP6 at Thr1479 and Ser1490 and the formation of a CK1ε–LRP6–axin1 complex, leading to an increase in cytosolic β-catenin. Moreover, TPA increased the association of β-catenin with TCF4E in a CK1ε/δ-dependent way, resulting in the activation of Wnt target genes. Consistently, treatment with a selective CK1ε/δ inhibitor SR3029 suppressed TPA-induced skin tumor formation in vivo, probably through blocking Wnt/β-catenin signaling. Taken together, our study has identified a pathway by which TPA activates Wnt/β-catenin signaling. |
---|